مقاله از تولد تا مرگ ستارگان

برای دریافت پروژه اینجا کلیک کنید

 مقاله از تولد تا مرگ ستارگان دارای 26 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله از تولد تا مرگ ستارگان  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه مقاله از تولد تا مرگ ستارگان

تولد تا مرگ ستارگان

ستارگان در شب;

درخشش ستارگان

طلوع و غروب ستارگان

اسامی ستارگان

مشخصات ستارگان

قدر و تابندگی ستاره

رنگ و دما

ابعاد

جرم

طبقه بندی درخشندگی

رده های طیفی

گدازش ستارگان

ترکیب هسته ای

تبدیل جرم به انرژی

نابودی هسته های سبک;

گدازش هیدروژن

گدازش دیگر عناصر

تکامل ستارگان

ستارگان با جرم متوسط

مرحله غول سرخ

مرحله شاخه افقی

مرحله غول جانبی

مرحله کوتوله سفید

مرحله کوتوله سیاه

ابر نواختر

ستارگان نوترونی

سیاهچاله ها

منبع

تولد تا مرگ ستارگان

در حدود 75 درصد از ستارگان جزء مجموعه های دوتایی هستند. دوتایی یک جفت ستاره است که دو عضو آن دور یکدیگر در چرخشند. خورشید جزء این ستارگان نیست اما نزدیکترین ستاره به خورشید که پروکسیما سنتوری (قنطورس) نام دارد جزء یک مجموعه چند ستاره ایست که آلفا سنتوری A و آلفا سنتوری B شامل آن می شوند. فاصله خورشید تا پروکسیما بیش از 40 تریلیون کیلومتر معادل 2/4 سال نوریست

ستاره ها در گروههایی به نام کهکشان گرد هم جمع آمده اند. تلسکوپها تا کنون کهکشانهایی را در فاصله 12 بیلیون تا 16 بیلیون سال نوری نشان داده اند. خورشید در کهکشان راه شیری قرار گرفته است و یکی از 100 بیلیون ستاره ایست که در آن می باشد. در جهان بیش از 100 بیلیون کهکشان وجود دارد و تعداد ستاره های هر کدام به طور متوسط 100 بیلیون می باشد. بنابراین بیش از 10 بیلیون تریلیون ستاره در کائنات وجود دارند. اما اگر ما در شبی با آسمان صاف و به دور از نور شهر به آسمان نگاه کنیم، البته بدون کمک تلسکوپ یا دوربین دو چشمی، تنها 3000 ستاره خواهیم دید

ستارگان نیز مانند ما انسانها دوره حیات دارند. آنها متولد می شوند، دورانی را سپری می کنند و در نهایت می میرند. خورشید حدود 6/4 بیلیون سال پیش متولد شد و تا بیش از 5 بیلیون سال دیگر عمر خواهد کرد. سپس شروع به بزرگ شدن می کند تا اینکه به یک غول سرخ تبدیل شود. در اواخر عمر خود، لایه های بیرونی خود را از دست می دهد و هسته باقیمانده که کوتوله سفید خوانده می شود، تدریجا نور خود را از دست خواهد داد تا اینکه به یک کوتوله سیاه تبدیل گردد

ستاره های دیگر به طرق مختلف مراحل عمر خود را سپری خواهند کرد. برخی از آنها مرحله غول سرخ را پشت سر نمی گذارند. به جای آن مستقیما وارد مرحله کوتوله سفید و سپس کوتوله سیاه می شوند. درصد کمی از ستارگان نیز در پایان عمر خود دچار یک انفجار مهیب به نام ابر نواختر می شوند

ستارگان در شب

اگر شما شبی به آسمان نگاه کنید متوجه خواهید شد که به نظر می رسد درخشش آنها کم و زیاد می شود و اصطلاحا ستاره ها چشمک می زنند. حرکتی بسیار آهسته نیز در ستارگان آسمان دیده می شود. اگر مکان چندین ستاره را در مدت چند ساعت دقیقا بررسی کنید مشاهده خواهید کرد که همه ستارگان به آرامی به دور یک نقطه کوچک در آسمان در گردشند

چشمک زدن ستارگان و کم و زیاد شدن درخشش آنها به دلیل حرکت جو زمین است. نور ستارگان به صورت پرتوهای مستقیم وارد جو می شوند. حرکت هوا دائما مسیر پرتوهای نور را تغییر می دهد

درخشش ستارگان

میزان درخشندگی ستارگانی که نور آنها به ما می رسد به دو عامل بستگی دارد. یک، درخشش واقعی ستاره که در اصل مقدار انرژی نورانیست که از آن متساطع می شود. دو، فاصله ستاره از زمین. یک ستاره نزدیک که کم نور است می تواند بسیار درخشانتر از یک ستاره دور دست اما بسیار درخشان به نظر آید. برای مثال، آلفا سنتوری A بسیار نورانیتر از ستاره ریگل (رجل الجبار) دیده می شود. این در حالیست که آلفا سنتوری A تنها 100000/1 ریگل انرژی نورانی تولید می کند در عوض فاصله آن از زمین تنها 325/1 فاصله ریگل از زمین است

طلوع و غروب ستارگان

وقتی از نیمکره شمالی زمین به آسمان نگاه می کنیم، ستارگان به دور نقطه ای که به آن قطب شمال سماوی می گوئیم بر خلاف جهت عقربه های ساعت در چرخشند. چنانچه در نیمکره جنوبی زمین باشیم و با آسمان نظر اندازیم، ستارگان هم جهت با عقربه های ساعت و به دور نقطه ای که به آن قطب جنوب سماوی می گوئیم، حرکت می کنند. در طی روز، خورشید نیز بر فراز آسمان، همجهت و همسرعت با دیگر ستارگان در گردش است. اما واقعیت این است که حرکتهایی که ما شاهد هستیم بر اثر جابجایی واقعی ستارگان روی نمی دهد، بلکه همه آنها به دلیل حرکت غرب به شرق زمین حول محور خود اینچنین به نظر می آیند. برای ناظری که بر روی زمین ایستاده، زمین ثابت و خورشید و دیگر ستارگان در حال حرکت گردشی به نظر می رسند

اسامی ستارگان

اجداد ما شاهد بودند که ستارگان مشخصی بر اساس الگوهایی شبیه به چیزهایی نظیر پیکر انسان، حیوانات و یا اشیاء شناخته شده، در کنار یکدیگر قرار می گیرند. بعضی از این الگوها، که به آنها صور فلکی می گوئیم، یادآور شخصیتهایی اسطوره ای هستند. برای مثال، صورت فلکی اریون (شکارچی) به یاد یک قهرمان اسطوره ای یونانی نامگذاری شده است

امروزه ستاره شناسان از این اسامی باستانی برای نامگذاری علمی ستارگان استفاده می کنند. اتحادیه بین المللی نجوم (IAU)، مجری نامگذاری اجرام سماوی، به طور رسمی 88 صورت فلکی را شناسایی کرده است. این صور همه آسمان ما را پوشانده اند. در بیشتر موارد، برای نامگذاری درخشانترین ستاره در هر صورت فلکی از حرف آلفا (نخستین حرف در الفبای یونانی) در قسمتی از نام علمی آن استفاده می شود. برای نمونه، نام علمی ستاره وگا، درخشانترین ستاره در صورت فلکی لیرا، آلفای لیرا است

حرف بتا به دومین ستاره درخشان در هر صورت فلکی اختصاص دارد و گاما برای سومین ستاره درخشان صور فلکی به کار می رود. به همین شکل در نامگذاری 24 ستاره درخشان در هر صورت فلکی از 24 حرف زبان یونانی استفاده می شود. با تمام شدن 24 حرف، اعداد به کار گرفته می شوند

به دلیل طولانی شدن عدد مربوط به ستارگان کشف شده، IAU از سیستم جدیدی برای نامگذاری ستارگانی که کشف می شوند، استفاده می کند. اغلب اسامی جدید تشکیل شده از حروف اختصاری به همراه گروهی از نشانه ها می باشند. حروف اختصاری، نشانگر نوع ستاره است و اطلاعاتی درباره ستاره بیان می کند. برای مثال، ستاره PSR J1302-6350 یک تپ اختر است، از آنجا که حرف اختصاری PSR در نام آن وجود دارد. اعداد 1302 و 6350 بیانگر موقعیت و مکان این ستاره (بعد و میل آن) در آسمان می باشند. حرف J مبین آن است که مکان ستاره در دستگاه اندازه گیری J2000 اعلام شده است

مشخصات ستارگان

هر ستاره دارای پنج مشخصه بارز است. 1) درخشندگی، که ستاره شناسان آن را در واحدی به نام قدر می سنجند. 2) رنگ. 3) دمای سطح. 4) اندازه ستاره. 5) جرم. همه این مشخصات به طور پیچیده ای با هم در ارتباطند. رنگ ستاره بیانگر دمای سطح است و درخشندگی آن به دمای سطح و اندازه وابسته است. جرم ستاره مشخص می کند که ستاره ای با اندازه مشخص چقدر می تواند انرژی تولید کند بنابراین بر دمای سطح تاثیر گذار است. برای اینکه این ارتباطات ساده تر قابل فهم باشند، ستاره شناسان از نموداری به نام هرتزپرانگ-راسل (H-R) استفاده می کنند. این نمودار به یاد ستاره شناس دانمارکی هرتزپرانگ (Hertzsprung) و هنری نوریس راسل (Henry Norris Russell) از ایالات متحده که به طور جداگانه کار می کردند و در سال 1910 آن را ابداع کردند، نامگذاری شد. این نمودار همچنین می تواند به ستاره شناسان در فهم و توضیح چرخه زندگی ستارگان کمک کند

قدر و تابندگی ستاره

قدر ستاره یک سیستم شماره گذاری برای تعیین میزان درخشندگی ستارگان است و توسط ستاره شناس یونانی، هیپارکوس، در سال 125 قبل از میلاد ابداع شد. هیپارکوس گروهی از ستارگان را بر اساس میزان درخشندگی آنها که از زمین به چشم می خورد، شماره گذاری کرد. او شماره 1 را به درخشانترین ستارگان اختصاص داد. شماره 2 از آن ستارگان با درخشندگی کمتر از ستارگان قدر 1 شد. و به همین ترتیب به قدر 6 رسید که آنها کم نورترین ستارگان آسمان بودند

امروزه ستاره شناسان به درخشش ستارگان که از زمین رویت می شود، قدر ظاهری می گویند. آنها سیستم هیپارکوس را توسعه دادند تا بتوانند درخشندگی واقعی ستارگان، چیزی که قدر مطلق ستاره نامیده می شود، را نیز با آن بیان کنند. بر اساس دلایل فنی، قدر مطلق یک ستاره برابر است با قدر ظاهری آن، برای ناظری که در فاصله 6/32 سال نوری از ستاره قرار دارد

ستاره شناسان همچنین سیستم اندازه گذاری قدر را برای ستارگان پرنورتر از قدر 1 و ستارگان کم نورتر از قدر 6، توسعه دادند. ستاره ای که از ستارگان قدر 1 پرنورتر است، قدر آن کمتر از 1 می باشد. برای مثال، قدر ظاهری ستاره ریگل (رجل الجبار) 12/0 است. قدر ستارگان بسیار نورانیتر، از صفر نیز کمتر می باشد و شامل اعداد منفی می شود. درخشانترین ستاره آسمان سیریوس (شباهنگ) است و قدر ظاهری آن 46/1- است. قدر مطلق ستاره ریگل 1/8- است. بر اساس شناختی که ستاره شناسان تا کنون از ستارگان به دست آورده اند، هیچ ستاره ای نمی تواند دارای قدر مطلق درخشانتر از 8- باشد. از طرف دیگر، کم نور ترین ستارگانی که تاکنون با تلسکوپ رصد شده اند، قدر ظاهری معادل 28 دارند

بر اساس تئوری قدر مطلق هیچ ستاره ای نمی تواند کمتر از 16 باشد

تابندگی یک ستاره برابر است با مقدار انرژی که ستاره منتشر می کند. اصطلاحا به این مقدار انتشار، قدرت ستاره می گویند. دانشمندان عموما قدرت ستاره را با واحد وات اندازه گیری می کنند. برای مثال قدرت خورشید 400 تریلیون تریلیون وات است. اما ستاره شناسان قدرت ستاره را با وات نمی سنجند. در عوض آنها میزان تابندگی را بر اساس میزان تابندگی خورشید اندازه گیری می کنند. برای نمونه آنها می گویند که تابندگی آلفای سنتوری (قنطورس) 3/1 برابر تابندگی خورشید و تابندگی ریگل حدودا 150000 برابر تابندگی خورشید است
تابندگی به روش ساده ای با قدر مطلق ستاره در ارتباط است. 5 واحد اختلاف در دستگاه قدر مطلق ستاره برابر است با یک فاکتور از 100 در دستگاه تابندگی. بنابراین ستاره ای با قدر مطلق 2، نسبت به ستاره ای باقدر مطلق 7، 100 بار تابناکتر است. ستاره ای با قدر مطلق 3- ، 100 بار از ستاره ای با قدر مطلق 2 و 10000 بار از ستاره ای با قدر مطلق 7 تابناکتر است

رنگ و دما

 

دریافت این فایل

برای دریافت پروژه اینجا کلیک کنید

تحقیق درباره لیزر و طرز تولید آن

برای دریافت پروژه اینجا کلیک کنید

 تحقیق درباره لیزر و طرز تولید آن دارای 24 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد تحقیق درباره لیزر و طرز تولید آن  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی ارائه میگردد

توجه : در صورت  مشاهده  بهم ريختگي احتمالي در متون زير ،دليل ان کپي کردن اين مطالب از داخل فایل ورد مي باشد و در فايل اصلي تحقیق درباره لیزر و طرز تولید آن،به هيچ وجه بهم ريختگي وجود ندارد


بخشی از متن تحقیق درباره لیزر و طرز تولید آن :

*تحقیق درباره لیزر و طرز تولید آن*

كلمه» لیزر« =Laser = از حروف اختصاری عبارت انگلیسی

Light Amplification by Stimulated Emission Of Radiation

ساخته شده است و به معنای» تقویت نور از طریق تشعشع تحریك شده« به كار می‌رود.

لیزر نوری است متشكل از پرتوهای به غایت دسته شده و همدوس كه بسامد امواج الكترومغناطیسی این پرتوها در حوزه بسامدی بین فرابنفش و فروقرمز گسترش می‌یابد. فرآیند لیزر از كوانتومی شدن انرژی در ماده و میدان تشعشع الكترومغناطیسی سر چشمه می‌گیرد و بر اثر تحریك ساختگی تشعشع پدید می‌آید.

وجود پدیده تشعشع تحریك شده را آلبرت اینشتین در سال 1316 ، در ضمن یك برداشت نو از فرمول تشعشع بلانك به دست آورد و پایه‌های فیزیكی آن را همان زمان انشا كرد. اما این نوآوری اینشتین نزدیك به نیم قرن فقط جنبه نظری داشت و از حلقه علاقه دانشمندان فیزیك فراتر نرفت.

اصطلاح» لیزر« از سال 1960 متداول گشت، و این هنگامی بود كه تئودور نویمان، از طریق تحریك تشعشع، نخستین لیزر را در بلور یاقوت تولید كرد. یك سال بعد در سال 1961 نیز جوان و همكارانش نخستین لیزر گاز هلیوم – نئون را ساختند. همچنین دیری نگذشت كه نخستین لیزر نیمه رسانای ارسینو- گالیوم نیز در سال 1962 به دست دو گروه مستقل( تقریباَ همزمان) تولید شد.

مهمترین لیزرها را می‌توان به سه گروه اصلی تقسیم كرد: لیزر اجسام سخت یا لیزر بلورها، لیزر گازها و لیزر نیمه رساناها. ولی این هر سه نوع لیزر از لحاظ فرآیند تولید در سه عامل اصلی زیر مشتركند:

  1. یك ماده فعال( عمل كننده) كه به یك نسبت در یك ماده پایه جا می‌گیرد، و اتمهای آن حالت كوانتومی خود را بر اثر دریافت انرژی تغییر می‌دهند، و فرآیند تشعشع تحریك شده را به راه می‌اندازند.
  2. یك پمپ كه انرژی را به اتمهای ماده عمل كننده فعال منتقل می‌كند، به طوری كه اتمهای این ماده حالت عادی تعادل گرمایی جسم را وارونه می‌سازند، به همین ملاحظه این مرحله تولید را وارونه‌سازی می‌خوانند. وارونه‌سازی عموماَ از طریق یك» پمپ‌اپتیكی« انجام می‌شود، به این شرح كه ماده آرایش یافته لیزر را تحت تابش نور ناهمدوس قرار می‌دهند و بدین نحو اتمهای ماده فعال را از سطح انرژی پایه به سطوح انرژی تحریك شده منتقل می‌كنند.

سه ظرف با محتوای مایع در سه سطح متفاوت قرار گرفته‌اند، و یك پمپ هیدرولیكی p مایع را از ظرف 1 به ظرف 3 می‌كشاند(رجوع به شكل6). سوپاپهای در لوله‌های اتصال تعبیه شده است، به طوری كه مایع می‌تواند به ظرف 2 منتقل گردد و از آنجا به درون ظرف 3 وارد شود، ولی مقدار این جریان البته با حجم مایع درون ظرفها متناسب خواهد بود. چنانچه احتمال انتقال از ظرف 2 به ظرف 1 از احتمال انتقال از ظرف 3 به ظرف 2، یا از ظرف 3 به ظرف 1، بسیار كمتر باشد، یك گزارش بیشتر برای تراكم مایع در ظرف 2 پدید می‌آید، و ظرفهای 1و 2 از حیث تراكم مایع با یكدیگر تعویض می‌شوند. همچنین اگر احتمال انتقال از ظرف 3 به ظرف 2 از احتمال دیگر انتقالها كمتر باشد، این امكان كه ظرفهای 3 و 2 از حیث تراكم با یكدیگر تعویض شوند، به وجود خواهد آمد.

دریافت این فایل

برای دریافت پروژه اینجا کلیک کنید

مقاله آشنایی با خواص گاز مایع و امکان استفاده از آن در موتورهای درون سوز

برای دریافت پروژه اینجا کلیک کنید

 مقاله آشنایی با خواص گاز مایع و امکان استفاده از آن در موتورهای درون سوز دارای 96 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله آشنایی با خواص گاز مایع و امکان استفاده از آن در موتورهای درون سوز  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه مقاله آشنایی با خواص گاز مایع و امکان استفاده از آن در موتورهای درون سوز

مقدمه     1
چکیده     2
فهرست اختصارات بکاربرده شده و علائم     3
فصل اول : سوخت و انواع آن
1-1- عوامل قابل اهمیت در انواع سوخت     5
1-2- احتراق سوخت هیدروکربنه    5
1-3- انواع سوخت موتورهای  درون  سوز     6
1-4- انتخاب صحیح مخلوط سوخت    6
1-5 – سوخت  گاز مایع  و استفاده از آن در موتور    8
1-6- معرفی گازهای طبیعی مورد استفاده در موتورهای بنزینی    10
1-6-1- تعریف (LNG)    10
1-6-2- ترکیبات     10
1-6-3- چگونگی ذخیره آن    11
1-6-4- چگونگی سرد نگه داشتن آن    11
1-6-5- علت استفاده از LNG به عنوان سوخت ماشین‌ها و وسایل نقلیه    11
1-7- تعریف ( CNG )    12
1-8- تعریفLPG     12
1-9- مزیت استفاده از LNG  بجای CNG به عنوان سوخت    13
1-10- عوامل عدم پذیرش LNG به عنوان سوخت خودروها    15
فصل دوم : موتورهای گاز مایع  سوز
2-1- چگونگی کار     17
2-1-1- سیستم‌های نسل اول    18
2-1-2- سیستم تبدیل نسل دوم    18
2-1-3- سیستم ‌های تبدیل نسل سوم    19
2-2- موتورهای مخصوص سوخت گازی    22
2-2-1- موتورهای گاز سوز مجهز به سیستم جرقه به سه دسته تقسیم می‌شوند    21
2-2-2- امتیازات سیستم استوگیومتری    21
2-2-3- معایب سیستم استوگیومتری    22
2-2-4- محاسن سیستم کم مصرف    22
2-2-5- معایب سیستم کم مصرف    22
2-3- سیستم سوخت رسانی    23
2-3-1- سیستم سوخت رسان نسل اول    24
2-3-2- سیستم رسان نسل دوم    25
2-3-3- سیستم سوخت رسانی نسل سوم    26
فصل سوم : موتورهای مورد استفاده درسوخت‌های گازی و ویژگی آنها و عوامل  موثر در کارکرد این موتورها
مقدمه    29
3-1- صنعت تبدیل    30
3-2- سیکل موتورهای دیزلی و otto    30
3-2-1- سیکل otto     30
3-2-2- سیکل دیزل    30
3-3- بازده حرارتی  موتور    30
3-4- نسبت هوا به سوخت    30
3-5- آنالیز و عملکرد موتور     30
– آنالیز گاز    30
3-5-1-تاثیرات روی بازده موتور    30
3-5-2-تاثیرات روی خروجی    30
3-5-3-تاثیرات روی قابلیت اشتغال     30
3-6- ویژگی سوخت    30
3-7- ویژگی ‌های احتراق     30
3-7-1- حرارت احتراق در واحد حجم    30
3-7-2- ضریب Wobbe    38
فصل چهارم : آلودگی خودروها
مقدمه    30
4-1- آلاینده‌های موتورها    30
4-2- راههای آلودگی    30
4-3- برنامه وسایل نقلیه با آلودگی کم CARB    30
4-4- آلاینده‌های موتورهای احتراق داخلی    30
4-5- عامل میزان آلایندگی موتورهای  گازسوز    49
4-5-1- سیستم احتراق     49
4-5-2- فن آوری استفاده از کاتالیزور    50
4-6- سیستم‌های عیب یاب  قابل  نصب بر روی  خودرو( OBD)    54
4-7- آلاینده‌های کنترل  شده    30
4-7-1- نوع اول از خودروها    30
4-7-2- نوع دوم از خودروها    55
4-7-3- خودروهای نوع سوم    57
4-8- انتشار گازهای آلاینده در دماها ی مختلف موتور    58
4-9- استاندارد آلودگی    60
4-9-1- استاندارد‌هایی که در آمریکا به اجرا  در آمده‌اند    60
4-9-2- قوانین  مربوط به آلاینده‌ها در اروپا    62
فصل پنجم : بررسی اثرات گازسوز کردن یک سری موتور‌های خاص از نظر  عملکرد  موتور  و آلایندگی آن و مقایسه  با حالت  بنزین سوز آنها
5- 1- نمونه موتور 4 سیلندر  تزریق مستقیم     63
5-1-1- آلودگی    63
5-1-2- تست عملکرد موتور    65
5-2- نمونه ماشینg523     66
5-2-1- تست آلودگی     67
5-2-2- تست عملکرد موتور    68
5-3- هوندا سیویک 6/1    70
5-4- موتور سیکلت    76
5-4-1- تست آلودگی    77
5-4-2- تست عملکرد موتور    80
5-5- بررسی عملکرد و کیفیت کیت‌های گازسوز تولیدی در کشور    80
5-5-1- موتور پیکان 1600    82
5-5-2- موتور پژو 405    83
نتایج حاصله    84
فصل ششم : بررسی کلی  معایب و مزایای گازسوز کردن موتورهای بنزینی و نتیجه گیری
6-1- مزایا و معایب گازسوز کردن    86
مراجع     91

مقدمه

ایران کشور ما دارای منابع سرشار نفت و گاز می‌باشد  و چنانکه بر همه روشن است مقادیر عظیم  گازهای طبیعی حاصل از استخراج  نفت  تا همین چند سال بیش بدون  هیچگونه استفاده  سوزانده شده و از بین میرفت.  بنابراین با وجود گاز طبیعی  فراوان  در ایران  و در نتیجه  در دسترس بودن و ارزانی آن و سوختن تمیز با ارزش حرارتی  قابل ملاحظه آن همه اینها و خیلی خواص دیگر میتواند انسان را بر آن دارد که از گاز نیز مثل سایر مواد سوختنی حاصل از نفت درسوخت ماشین‌ها و دستگاه‌های  سوختی استفاده کنند بطورکلی در دنیا  امروزه  مهمترین سوخت مورد استفاده در انواع موتورهای درون  سوز شامل : بنزین ، گازوئیل، گاز و گاز مایع می‌باشند که همه  از ترکیبات هیدرکربورها می‌باشند.که میزان استفاده از هر کدام  از مواد  سوختنی فوق در هر منطقه در درجه اول به فراوانی و ارزانی بستگی  دارد

چکیده

هدف از این بررسی آشنائی به خواص گاز مایع و امکان استفاده از آن در موتورهای درون سوز  می‌باشد. و چنانکه  خواهیم دید موتورهای گاز مایع سوز شبیه انواع بنزینی است.  ولی نظر به سوخت ویژه‌ای که در این موتورها بکار می‌رود ، نیاز به برخی و سایل و ابزاری مخصوص بخو د دارد . مطالب   مورد بحث در این مجموعه صرفا یک بررسی مقدماتی  جهت شناسایی ساختمان سیستم سوخت رسانی موتورهای گاز مایع سوز و نحوه کارآنها می‌باشد

که در ادامه این بحث به بررسی کامل انواع سوخت ‌های گازی مورد  استفاده در موتورهای بنزینی و همچنین به نحوه کار موتورهای بنزینی و گازی می‌پردازیم که همچنین  به بررسی  انواع آلاینده‌های موجود  در موتورهای بنزینی و گازی و همچنین مقایسه بین آنها از نظر میزان  آلاینده‌ها و همچنین به بررسی تاثیر گاز سوز کردن موتورهای  بنزینی از نظر عملکرد موتور و مقایسه بین موتورهای بنزینی و گازی از نظر عملکرد می‌پردازیم که به صورت یک سری نمودار‌ها و داده‌های آماری به دست  آمده از یک سری منابع ، آورده شده و در کل به نتیجه گاز سوز کردن موتور می‌پردازیم و در  پایان یادآور  می‌شویم که در صورت  گاز سوز شدن صحیح اتومیبل‌ها کارکرد  آنها تفاوت چشم گیری نکرده و  قدرت و کشش ماشین حدود 5 درصد نسبت به بهترین حالت کار با بنزین ( که معمولا  ماشین‌ها هیچ وقت در این حالت نمی‌باشد) پائین می‌آید که به هیچ وجه محسوس  نمی‌باشد

فصل اول : سوخت و انواع آن

1-1- عوامل قابل اهمیت در انواع سوخت

-بایستی دارای ارزش حرارتی قابل ملاحظه‌ای باشد

-درحرارت‌های کم نیز بتواند بصورت بخار در آیند

-بخار سوخت بتواند با مخلوط مناسب اکسیژن فوراً بسوزد

-تولیداتی که از احتراق چنین سوخت‌هایی حاصل می‌شود بایستی زیان آور نبوده  و  برای سلامت محیط  زیست خطرناک نباشد

-آنها را بتوان در شرایط طبیعی حمل و نقل کرده ، چه از نظر سادگی عمل  و چه از نظر اصول ایمنی

– تولید آنها از نظر اقتصادی مناسب باشد

-سیستم مصرف مصرف کننده اقتصادی باشد. [1]

1-2- احتراق سوخت هیدروکربنه

سوختن بطورعموم عبارت  است از ترکیب با اکسیژن که به منجر به ایجاد محصولی بنام اکسید می‌شود. سوختن ممکن است خیلی سریع و یا کند باشد. مثلا زنگ زدگی آهن به نتیجه ترکیب آهن با اکسیژن بمدت طولانی  است و یا سوختن ذغال چوب خیلی سریع انجام  می‌شود

در موتورهای درون سوز نیز ترکیب ماده سوختنی با اکسیژن اتفاق می‌افتد و نتیجه تولید اکسیدهای کربن که اغلب شامل منواکسید و دی اکسید کربن و همین طور مقداری بخار آب و حرارت می‌باشد.[1] مانند

CO2+2H2O+Q CH4+2O2  :متان

C8H18+12.5O2  8CO2+9H2O+Q : اکتان

1-3- انواع سوخت موتورهای  درون  سوز

معمول‌ترین سوخت‌های رایج  در موتورهای درون سوز، عبارت از، بنزین ، نفت ، گاز و گاز مایع و گازوئیل  می‌باشد. که چهار نوع اول در موتورهائی که با سیستم جرقه شمع کار می‌کند مورد استفاده قرار می‌گیرند و گازوئیل نیز سوخت موتورهای دیزل  را شامل  می‌شود. [1]

1-4- انتخاب صحیح مخلوط سوخت

باید دانست که 23 درصد حجم هوا را اکسیژن تشکیل می‌دهد، که در سوختن تاثیر دارد و 77 درصد بقیه شامل نیتروژن و سایر گازها است که در عمل احتراق تاثیری ندارد. البته نیتروژن در حرارت‌های بالا تا حدودی می‌سوزد و ایجاد اکسید‌های ازت کرده، که در آلودگی محیط زیست تاثیر بسزایی دارند

بطورکلی یک مخلوط سوخت وهوا به نسبت 1 : 15 با در نظر گرفتن وزن صحیح آنها یک احتراق . کامل و طبیعی دارد. در صورتیکه مخلوط از نظر سوخت  قوی تر باشد آنرا غنی و اگر هوا بیشتر باشد آنرا  رقیق می‌گویند که مخلوط سوخت‌های غنی را می‌توان از ایجاد  دوده در اگزوز، کاهش یا ضعف قدرت و بالاخره گرم کردن موتور تشخیص  داد. همینطور  برای شناسائی مخلوط رقیق می‌توان  از ایجاد شدن Back f iring در مدخل  ورودی گاز و کاربراتور که مهمترین عامل شناسائی این پدیده است، و همچنین  دیر روشن شدن موتور ، ضعیف شدن قدرت موتورو بالاخره گرم کردن به این موضوع پی برد

با توجه به منحنی شماره (1-1) که  در مورد بنزین است و از تغییر تنظیم کاربراتور بوجود آمده‌اند نشان می‌رسد که ماکزیمم راندمان ، زمانی خواهد بود که نسبت میزان  هوا به سوخت 1 : 16 باشد  و ماکزیمم قدرت هنگامی صورت می‌گیرد که این میزان 1 : 12 می‌باشد. بنابراین تنظیم صحیح جایی بین این دو حد قرار دارد

-6- معرفی گازهای طبیعی مورد استفاده در موتورهای بنزینی

در حال حاضر در موتورهای بنزینی از انواع مختلف گازها استفاده  می‌شود ، که به بررسی تعدادی از آنها که در حال حاضر  بیشتر از بقیه  موارد مورد استفاده قرار می‌گیرد می‌پردازیم

گازهای طبیعی مورد استفاده در حمل و نقل غالبا به  دو صورت گاز طبیعی فشرده ( CNG ) و گاز طبیعی  مایع  (LNG ) می‌باشد. [2]

1-6-1- تعریف (LNG  )

هنگامی که گاز طبیعی تحت فشار اتمسفر  به دمای  تقریبا Fْ260- نزدیک شود تبدیل به مایع می‌شود که این گاز مایع را گاز طبیعی یا LNG گویند. هر حجم  این گاز طبیعی معادل  گاز طبیعی فضا  اشغال می‌کند . وزن این گاز تقریبا معادل نصف وزن آب است یا بطور دقیق معادل 45 % وزن آب است

گاز طبیعی مایع بدون بو ، بدون رنگ ، غیرخورنده و غیر سمی می‌باشد و این گاز در حالت  بخار با 5 الی 15 درصد با هوا  می‌سوزد. [2]

1-6-2- ترکیبات

گاز طبیعی ترکیب شده از گازهای  متان در حدود 90 درصد وشامل اتان ، پروپان و هیدروکربنهای  سنگین می‌باشد . و همچنین از مقدار کمی نیتروژن، اکسیژن، دی اکسید کربن و ترکیبات گوگرد و آب که در خط لوله گاز طبیعی پیدا می‌شود. مایع کردن این گاز باعث از بین رفتن اکسیژن ، دی اکسید کربن و ترکیبات گوگرد و آب می‌شود. که با مایع کردن این گاز طبیعی می‌توان آن رابه 100 % گاز متان تبدیل کرد. [2]

1-6-3- چگونگی ذخیره آن

گاز مایع طبیعی در استوانه‌های دو جداره باعایق  بندی بسیار خوب ذخیره می‌شود ، تانکهای ذخیره این گاز دارای نسبت عرض به ارتفاع کم می‌باشد . که فشار ذخیره سازی آنها  در این مخازن کم و در حدود Pisg 5 و یا کمتر باید باشد. این مایع برای اینکه مستقل از فشار بخواهد مایع قرار بگیرد باید در دمای کمتر از 117- قرار گرفته شود. [2]

1-6-4- چگونگی سرد نگه داشتن آن

عایق بندی که برای سرد نگه داشتن گاز مایع طبیعی بکار می‌رود باز هم نمی‌تواند جوابگو باشد بخاطر همین آن را در یک محفظه بنام یخ جوشان که یک  مایع بسیار سرد در دمای جوش می‌باشد نگه می‌دارند هنگامی که گرما به مخزن داده می‌شود مایع می‌جوشد و به بخار تبدیل می‌شود دما تغییر نمی‌کند.  این بخار از مخزن خارج شده و فشار در داخل مخزن ثابت می‌ماند و اگر بخار خارج نشود فشار و دما بالا می‌روند، این مانند حالتی است که آب مایع در حال جوش در دیگ بخار(بویلر) می‌باشد. LNG یک گاز طبیعی است که مانند بقیه گازها و سوختها حمل و نقل و ذخیره می‌شود[2]

1-6-5- علت استفاده از LNG به عنوان سوخت ماشین‌ها و وسایل نقلیه

استفاده از گاز LNG به چند دلیل می‌باشد که شامل دلیلهای زیر است

1-LNG گازی می‌باشد. که در هنگام سوخت به صورت  گازمی سوزد و منافع استفاده از این گاز هنگامی مورد توجه قرار می‌گیرد که با سوخت بنزین و گازوئیل مقایسه شود

2-سوخت گاز طبیعی نسبت به سوختهای معمولی(بنزین و گازوئیل ) دارای آلودگی کمتر می‌باشند که این آلودگی شامل مواد خاص( PM ) ، مونواکسیدکربن (Co ) ،ترکیبات نیتروژن  Nox و هیدروکربنهای غیر متان (NMHC )

3-LNG چگالی بالاتری نسبت به دیگر سوختهای جایگزین دارد که با یک مقایسه به این سوختها برای بدست آوردن برد یکسان 105 گالن از LNG معادل یک گالن  از بنزین و 107 گالن از LNG معادل یک گالن گازوئیل می‌باشد

4-LNG از نظر انرژی ارزانتر از بنزین و گازوئیل می‌باشد

5-زمان سوخت گیری LNG معادل سوختهایی است که جایگزین آنها شده است

6-LNG می‌تواند مانند دیگر سوختها ی مایع توسط وسایل نقلیه به ایستگاههای سوخت گیری برداشته شود

7-علاوه بر وجود بعضی از عدم اعتماد‌ها نسبت به LNG ولی آزمایشها نشان می‌دهد کهLNG که به عنوان سوخت نسبت به گازوئیل خطرناکتر نیست و امن تر می‌باشد . دمای احتراق این سوخت Fْ500  از گازوئیل بیشتری می‌باشد . و در حدود 5 الی 15درصد با هوا ترکیب می‌شود و در هوای آزاد منفجر نمی‌شود. [2]

1-7- تعریف ( CNG )

گاز طبیعی فشرده(CNG ) گازی است که فشرده شده و در تانکهای سیلندر جوش داده شده ذخیره می‌شود. که فشار ذخیره سازی Psi 3600 (پوند براینچ مربع ) است و ترکیبات آن مانند ترکیبات گاز طبیعی درون خط لوله‌های محلی می‌باشد که مقداری از آب آن گرفته شده است. LNG و CNG به صورت گاز کم فشار و در فشار حدود Psig 300 وارد موتور می‌شود و CNG معمولا به  اشتباه به عنوان تنهاسوخت قابل مصرف  در وسایل نقلیه عنوان می‌شود که LNG می‌تواند جهت تولید CNG استفاده می‌شود. که بیشتر در ماشین ‌های سنگین از آنها استفاده می‌شود. [2]

1-8- تعریفLPG

LPG (Liquid Petroleum gas) که در بعضی موارد پروپان مایع  هم خوانده می‌شود که معمولا با LNG اشتباه می‌گیرند که فرق بین LNG و LPG در موارد زیر است

1-LPG اکثرا از پروپان تشکیل شده است در حدود 95 درصد آن را پروپان تشکیل داده است و مقادیر کمی از بوتان

2-LPG تنها با اعمال فشار می‌توان در تانک ذخیره شود

3-LPG معمولا گازهای سیلندری می‌باشد. که موارد استفاده بیشترLPG  در ماشینهای سبک می‌باشد

استفاده از گازطبیعی فشرده( CNG ) در خودروهای سبک و نیمه سبک موضوعی  است که هم اکنون در برنامه وزارت نفت قرار دارد.  از طرفی  تحقیقات جدید در دنیا به مزیت ها‌های  استفاده  از گاز طبیعی مایع (LNG ) نیز اشارت قابل ملاحظه‌ای دارد. [2]

1-9- مزیت استفاده از LNG  بجای CNG به عنوان سوخت

LNG در مقایسه با گاز طبیعی فشرده  شده (CNG ) دارای مزیت‌هایی است . عدد اکتان بالاتر، یکنواختی، ثبات ، کیفیت و سرعت سوخت گیری بالاتر ( حدود 10 الی40 گالن در هر دقیقه ) از مزیت‌های آن به حساب می‌آید. LNG ازلحاظ چگالی حجمی انرژی وسایر خصوصیات، مشابه گازوئیل است و در خودروهای سنگین می‌توان ازآن بعنوان سوخت استفاده نمود. این نوع خودرو‌ها برعکس خودروهای سواری با محدودیت فضا  جهت ذخیره سازیLNG مواجه نیستند. از سوی دیگر  به سبب توقف‌های طولانی در خودروهای سواری ، سوختLNG مناسب این نوع خودرو‌ها نیست زیرا به مرور زمان تبخیر  می‌شود. البته باید داشت که هم سرعت تبخیر و هم میزان تبخیر ،بستگی مستقیم به مقدار و سرعت  نشتیLNG دارد. ابعاد و نوع محیطی که در آن LNG تبخیر می‌شودو نیز شرایط  جوی ومیزان فشار LNG  بر سرعت و میزان تبخیر تا حدی تاثیر گذار است. مقادیر کم LNG که از خودرو نشت می‌کند به محض تماس با سطح زمین بخار می‌شود

-در دمای منفی 160 درجه فارنهایت، بخار LNG در هوا شناور می‌شود و به سرعت در فضای محیط ، منتشر می‌شود. هرگونه نشتی عمده که باعث ایجاد  بخار متراکمی از LNG شود بر اثر حرارت زمین به سرعت در فضا منتشر می‌شود که در این بین باد نیز درانتشار بخار حاصل از تبخیر LNG موثر است

-برای خودروهایی که عمر مفید آنها حدود 3 سال است و یا مصرف سالیانه آنها تقریبا 1200 گالن می‌باشد (خودروهای سواری و سبک ) ، سوخت CNG مناسب تر است. البته باید توجه داشت که این امر باعث نمی‌شود تا از اهمیتLNG کاسته شود. بدین ترتیب که CNG مورد را می‌توان از تبخیر  LNG و با هزینه‌ای بسیار پایین به دست آورد . بنابراین خودروهایی با سوخت LNG همچنین خودروهایی که سوخت CNG مصرف می‌کنند می‌توانند از یک جایگاه توزیع سوخت برای سوخت  گیری استفاده کنند

LNG به عنوان سوخت دارای ویژگی‌های متعددی است که عبارتند از

1-چگالی بالا: از آنجایی که LNG بصورت مایع می‌باشد ، مایع مقدار زیادی از این سوخت  را در فضای کوچکی  ذخیره نمود. در خودروها عوامل چون حداقل وزن ، سوخت، و بیشترین مسافت پیموده شده در هر گالن  از مزیت‌های یک سوخت به حساب می‌آیند و در انتخاب نوع  سوخت از اهمیت بالایی برخوردار می‌باشند

2-سرعت سوختگیری : زمان سوختگیری کامیون‌ها بزرگ با سوخت LNG حدود 4 الی 6 دقیقه است  اخیراً میزان خلوص متان در LNG تولید شده ، بیش از99 درصد رسیده است این خلوص بالا در سوخت LNG ، عملکرد منظم و صحیح سیستم سوخت رسانی وموتورخودروها می‌شود، در نتیجه میزان مصرف و نیز آلایندگی  خودروها به نحو چشمگیر کاهش می‌یابد

3-قابل حمل و دسترسی آسان : سوخت LNG را می‌توان در مخازنی به ظرفیت پانزده هزار و پانصد گالن، روی تریلرها، واگن‌های قطار و یا کامیون‌های کوچکتر و نیز در مخازن 30 میلیون گالنی در کشتی‌های مخصوص حمل LNG از جایی به جای دیگر منتقل نمود. برای انتقال LNG به جایگاه‌های توزیع سوخت ، بیشتر از تریلر‌های مخصوص این کار استفاده می‌شود

4-تاسیسات توزیع سوخت کم هزینه تر : برای بدست آوردن LNG غالبا گاز طبیعی را به صورت مایع در آورده سپس بوسیله کامیون آنرا حمل می‌کنند، بدین ترتیب با کمترین هزینه از تاسیسات موجود نظیر خطوط لوله انتقال گاز طبیعی و منابع تامین گاز ارزان قیمت می‌توان حداکثر استفاده را نمود

5-مخازن  ذخیره سازی سبک تر

6-عدم کاهش کارایی موتورها با سوخت LNG

7-شباهت به سوخت‌های فعلی : جدای از مسائل اقتصادی، انگیزه و مشوق اصلی صاحبان و مدیران ناوگان حمل و نقل  جاده‌ای برای تبدیل  خود روها به LNG ، شباهت LNG  به سوخت‌های متعارف فعلی و شفافیت عملکرد خودرو‌ها با این نوع سوخت است. [3]

1-10- عوامل عدم پذیرش LNG به عنوان سوخت خودروها

1-دمای بسیار پایین : یکی از عواملی که باعث شده است تا LNG کمتر از سوخت‌های گازی مورد استقبال قرار گیرد، دمای بسیار  پایین آن است

2-سوختیگری : در اکثرمواقع لوله ها، شیرها ، تجهیزات اندازه گیری و شیلنگ‌های سوخت  گیری که  مخزن ذخیره سازیLNG را به خودرو  متصل می‌کند قبل از شروع عملیات سوخت گیری باید خنک شوند این عمل باعث تبخیر بخشی از سوخت می‌شود. استفاده از سایر روش‌ها با استفاده از پمپ ، یا فشار باعث به حداقل رسیدن میزان تبخیر LNG می‌شود

3-حداکثر میزان  سوختگیری : یک مخزن  ذخیره سازی سوخت که تحت دمای بسیار پایین است را نمی‌توان کاملا  پر نمود. باید فضایی را برای گازهای تبخیر شده خالی نگاه داشت. هرگز نباید مخزن ذخیره  سازی LNG را پر نمود زیرا این امر باعث افزایش بیش از حد فشار داخل مخزن می‌شود ، امروزه سیستم‌های سوخت گیریLNG طوری طراحی شده‌اند که هنگام پر شدن حجم معینی از مخزن بطور خودکار ، عمل سوخت گیری را متوقف  می‌کنند

4-ذخیره سازی در خودرو : اگرچه LNG بصورت  مایع در خودرو ذخیره می‌شود، اما قبل از ورودبه موتور باید مجددا به گاز تبدیل شود. در حالت مطلوب ، عمل تبخیر LNG می‌بایست در پایین‌ترین  درجه ممکن  صورت گیرد. این امر سبب خواهد شد تا چگالی بار سوخت وارد شده به موتور و در نتیجه شدت موتورافزایش یابد در مجموع می‌توان گفت LNG می‌تواند جایگزین خوبی برای سوخت‌های متعارف و متداول امروزی  باشد .قیمت LNG و گازوئیل در کشورهای مختلف جهان از قیمت  بنزین پایین تر است

هزینه‌های تعمیر و نگهداری خودروهای با سوخت LNG  نیز به دلیل مرغوبیت  این سوخت ،کمتر ازسایر خودر‌ها ست. احتراق عاری از دود و آلایندگی LNG باعث افزایش طول عمر شمع ها، کاهش تعداد دفعات  تعویض روغن و میزان  فرسودگی قطعات موتور می‌شود. با در نظر گرفتن این عوامل هزینه‌های مربوط به خودروهای  با سوخت LNG بسیار پایین تر از خودروهای بنزینی و گازوئیل خواهد شد. [3]

فصل دوم : موتورهای گاز مایع  سوز

2-1- چگونگی کار

دریافت این فایل

برای دریافت پروژه اینجا کلیک کنید

مجموعه فیزیک ریاضی فیزیک 2و1 رشته فیزیک پزشکی

برای دریافت پروژه اینجا کلیک کنید

توجه : این فایل به صورت فایل PDF (پی دی اف) ارائه میگردد

 مجموعه فیزیک ریاضی فیزیک 2و1 رشته فیزیک پزشکی دارای 178 صفحه می باشد و دارای تنظیمات و فهرست کامل در PDF می باشد و آماده پرینت یا چاپ است

فایل پی دی اف مجموعه فیزیک ریاضی فیزیک 2و1 رشته فیزیک پزشکی  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی ارائه میگردد

توجه : در صورت  مشاهده  بهم ريختگي احتمالي در متون زير ،دليل ان کپي کردن اين مطالب از داخل فایل مي باشد و در فايل اصلي مجموعه فیزیک ریاضی فیزیک 2و1 رشته فیزیک پزشکی،به هيچ وجه بهم ريختگي وجود ندارد


بخشی از متن مجموعه فیزیک ریاضی فیزیک 2و1 رشته فیزیک پزشکی :

مجموعه فیزیک ریاضی فیزیک 2و1 رشته فیزیک پزشکی

توضیحات محصول :جزوات آمادگی آزمون دکتری رشته فیزیک پزشکی ویژه کنکور سال 95 – به همراه تست ها و پاسخ تشریحی

فصل اول:بردارها
یک بردار پاره خطی است، جهت دار. که هر بردار شامل طول و جهت می باشد.
چنانچه دو بردار همسنگ یا یکی باشند، آن دو طول مساوی داشته و موازی بوده و هم جهت می باشند.
تعریف: برابری بردارها
cc,bb,aakcj
ˆ biak
ˆ
ai bj c =++ ¢ + ¢ + ¢ =Þ ¢ = ¢ = ¢

جمع جبری
دو بردار را می توان از طریق جبری با افزودن مؤلفه های عددی متناظرشان به یکدیگر با هم جمع کرد.
k
ˆ
)cc(j
ˆ
)bb(i
ˆ
)aa(vv
k
ˆ cj
ˆ bi
ˆ av
k
ˆ cj
ˆ bi
ˆ av
21212121
2222
1111
+++++=+Þ
ïþ
ï
ý
ü
++=
++=

تفریق
قرینه بردار v بردار v- است که طولی برابر طول v دارد اما جهت آن مخالف جهت v است.
2 برای کم کردن بردار
v 1 از بردار
، v 2 به را -v 1
v می افزاییم.
ABAD BD -=-+=+= vv)v(v 2121

و مانند جمع جبری با آن رفتار می کنیم:
k
ˆ
)cc(j
ˆ
)bb(i
ˆ
)aa(vv
k
ˆ cj
ˆ bi
ˆ av
k
ˆ cj
ˆ bi
ˆ av
21212121
2222
1111
-+-+-=-Þ
ïþ
ï
ý
ü
++=
++=

cj ˆ طول بردار k
ˆbi
ˆ
=++ av را معمو ًلا با |v| نشان می دهند که می توان آن را اندازه v خواند.
222
cba|k
ˆ cj
ˆbi
ˆ
a||v| ++=++=
جهت بردار
جهت بردار ناصفر A بردار واحدی است که از تقسیم A بر طولش به دست می آید:

سوالات تستی……………….

پاسخنامه………………

نوع فایل: Pdf

سایز: 1.91Mb

تعداد صفحه:178

دریافت این فایل

برای دریافت پروژه اینجا کلیک کنید

مقاله فیزیک الکتریسیته و مغناطیس

برای دریافت پروژه اینجا کلیک کنید

 مقاله فیزیک الکتریسیته و مغناطیس دارای 29 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله فیزیک الکتریسیته و مغناطیس  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه مقاله فیزیک الکتریسیته و مغناطیس

امواج الکترومغناطیس  
تعریف فیزیک امواج الکترو مغناطیسی  
یکاهای معروف  فیزیک امواج الکترو مغناطیسی  
طیف نمایی و فیزیک امواج الکترو مغناطیسی  
کاربرد‌های فیزیک امواج الکترومغناطیسی  
مغناطیس سلطان میدان ها  
بمبهای الکترومغناطیسی  
در جست و جوی القای الکترومغناطیسی  
الکتریسیته و مغناطیس  
سیر تحولی و رشد  
منشأ میدان مغناطیسی  
اثر مغناطیسی جریان الکترولیتی  
اثر مغناطیسی جریان و خواص الکتریکی رسانا  
فیزیک چیست ؟  
شصت سال فیزیک ایران  
ذرات بینهایت  
تاریخچه علم فیزیک  
نسبیت و کوانتوم  
نظریه کوانتومی  
الکترومغناطیس- سابقه تاریخی  
اپتیک  
تاریخ و شاخه های فیزیک  
تاریخ فیزیک  
شاخه های فیزیک  
فیزیک کلاسیک  
فیزیک جدید  
فیزیک و دیگر علوم  
منابع:  

بخشی از منابع و مراجع پروژه مقاله فیزیک الکتریسیته و مغناطیس

1 _ پرسش های ابوریحان و پاسخ های ابن سینا، تالیف اسفندیار معتمدی، انتشارات نغمه

2 _ علم در ایران، دکتر مهدی فرشاد، تهران، انتشارات امیرکبیر، جلد اول، صفحه

امواج الکترومغناطیس

    در مکانیک کلاسیک و ترمودینامیک تلاش ما بر این است که کوتاهترین وجمع و جورترین معادلات یا قوانین را که یک موضع را تا حد امکان به طور کامل تعریف می‌کنند معرفی کنیم. در مکانیک به قوانین حرکت نیوتن و قوانین وابسته به آنها ، مانند قانون گرانش نیوتن، و در ترمودینامیک به سه قانون اساسی ترمودینامیک رسیدیم. در مورد الکترومغناطیس ، معادلات ماکسول به عنوان مبنا تعریف می‌شود. به عبارت دیگر می‌توان گفت که معادلات ماکسول توصیف کاملی از الکترو‌مغناطیس به دست می‌دهد و علاوه برآن اپتیک را به صورت جزء مکمل الکترومغناطیس پایه گذاری می‌کند. به ویژه این معادلات به ما امکان خواهد داد تا ثابت کنیم که سرعت نور در فضای آزاد طبق رابطه (C=1/0 0) به کمیتهای صرفا الکتریکی و مغناطیسی مربوط می‌شود

    یکی از نتایج بسیار مهم معادلات ماکسول ، مفهوم طیف الکترومغناطیسی است که حاصل کشف تجربی موج رادیویی است. قسمت عمده فیزیک امواج الکترومغناطیسی را از چشمه‌های ماورای زمین دریافت می‌کنیم و در واقع همه آگاهیهای که درباره جهان داریم از این طریق به ما می‌رسد. بدیهی است که فیزیک امواج الکترو مغناطیسی خارج از زمین در گسترده نور مرئی از آغاز خلقت بشر مشاهده شده‌اند

تعریف فیزیک امواج الکترو مغناطیسی

فیزیک امواج الکترو مغناطیسی یک رده از فیزیک امواج است که دارای مشخصات زیر است

* امواج الکترو مغناطیسی دارای ماهیت و سرعت یکسان هستند و فقط از لحاظ فرکانس ، یا طول موج با هم تفاوت دارند

 * در طیف فیزیک امواج الکترو مغناطیس هیچ شکافی وجود ندارد. یعنی هر فرکانس دلخواه را می‌توانیم تولید کنیم

*  برای مقیاس‌های بسامد یا طول موج ، هیچ حد بالا یا پائین تعیین شده ای وجود ندارد

* از جمله منابع زمینی فیزیک امواج الکترومغناطیسی می‌توان به فیزیک امواج دستگاه رله تلفن ، چراغ‌های روشنایی و نظایر آن اشاره کرد

* این فیزیک امواج برای انتشار خود نیاز به محیط مادی ندارند

* قسمت عمده این فیزیک امواج دارای منبع فرازمینی هستند

* فیزیک امواج الکترومغناطیسی جزو امواج عرضی هستند

گسترده فیزیک امواج الکترو مغناطیسی

    فیزیک امواج الکترومغناطیسی از طولانی‌ترین موج رادیویی ، با طول موج‌های معادل چندین کیلومتر ، شروع شده پس از گذر از موج رادیویی متوسط و کوتاه تا نواحی کهموج ، فروسرخ و مرئی امتداد می‌یابد. بعد از ناحیه مرئی فرابنفش قرار دارد که خود منتهی به نواحی اشعه ایکس ، اشعه گاما و پرتوی کیهانی می‌شود. نموداری از این طیف که در آن نواحی قراردادی طیفی نشان داده می‌شوند در شکل آمده است که این تقسیم بندی‌ها جز برای ناحیه دقیقا تعریف شده مرئی لزوما اختیاری‌اند

 یکاهای معروف  فیزیک امواج الکترو مغناطیسی

* طول موج به تناسب مورد ، برحسب متر و همچنین میکرون یا میکرومتر m ، واحد آنگستروم A و واحد ایکس XU نشان داده می‌شود

* با به کار بردن متر به عنوان واحد طول ، طول موج‌های نوری بایستی بنا به تناسب برحسب ، nm سنجیده شوند، ولی هنوز آنگستروم یک واحد رسمی بوده و به عنوان متداول ترین واحد در طیف نمایی به کار برده می شود

 * واحد XU ابتدا به شکل مستقل طوری تعریف شده بود که رابطه آن با آنگستروم به صورت 1A=XU 1002.060 بود. این واحد اکنون دقیقا معادل 10-10 یا m 10-13 تعریف شده است

* علی رغم طبقه بندی عمومی تابش با طول موج ، کمیت مهم از نظر ساختار اتمی و مولکولی فرکانس <=c/vacvac=c/v جایگزین شود. مولفین مختلف واحدهای مختلفی را برای عدد موجی مانند ، K و به کار می‌برند که همگی یکسان‌اند، در این بحث علامت انتخاب شده است، زیرا امکان اشتباه آن با خود و یا سایر ثابت ها کم است

* واحد عدد موجی یک بر سانتیمتر است که گاهی کایزر (K) نامیده می‌شود. واحد کوچکتر آن میلی کایزر        است که ( mk ) واحد مناسبی برای ساختار فوق ریز و کارهای مربوط به عرض خطی است. هر چند که       متخصصین طیف نمایی فرکانس رادیویی برای این قبیل کمیت‌ها واحد فرکانس یعنی MHz را به کار            می‌برند (MHz 29.979=mk 1 )

* انرژی موج را بر حسب واحد الکترون ولت ( ev ) بیان می‌کنند که انرژی‌های فوتونی خیلی بالا ( مربوط به طول موج‌های خیلی کوتاه ) یک الکترون ولت معادل 16×10-19J است

طیف نمایی و فیزیک امواج الکترو مغناطیسی

* ناحیه مرئی یا نور مرئی ( 4000-7500 آنگستروم ) توسط نواحی فروسرخ از طرف طول موج‌های بلند ، فرابنفش از طرف طول موج‌های کوتاه ، محصور شده است. معمولا این نواحی به قسمت های فروسرخ و فرابنفش دور و    نزدیک ، با محدوده‌هایی به ترتیب در حدود 30 میکرومتر و 2000 آنگستروم تقسیم می‌شوند که نواحی مزبور دارای شفافیت نوری برای موادی شفاف از جمله منشورها و عدسی‌ها می‌باشند

*  تا این اواخر ناحیه مرئی متشکل از فروسرخ تا فرابنفش نور توسط گاف‌هایی از نواحی رادیویی و اشعه ایکس سوا می‌شدند که در آنها بر انگیزش و آشکارسازی تابش با طول موج‌های متناسب ممکن نبوده است. اختراع رادار در سال‌های جنگ ( 45- 1938 ) راه ورود به نواحی فیزیک امواج خیلی کوتاه رادیویی یا کهموج را باز کرد، در حالی که در همان زمان طیف شناسان فروسرخ دامنه فعالیت خود را تا به نواحی طول موج‌های بلندتر توسعه می‌دادند. این دو ناحیه هم اکنون ابعاد کوچکتر از میلیمتر روی هم می‌افتند

* گاف طول موج کوتاه ، به خاطر جالب بودنش برای متخصصین فیزیک پلاسما و اختر فیزیک به خوبی پر شده است. هم اکنون حدود طیف نمایی نوری به زیر 2 آنگستروم رسیده است در حالی که مرز پرتوهای ایکس نرم تا 50 آنگستروم می‌رسند. تشخیص بین پرتو نوری و پرتو ایکس ، در ناحیه پوشش فوق الذکر بر منشا خطوط طیفی مبتنی است

طیف نمایی نوری با گذار‌های الکترونهای خارجی یا ظرفیتی و طیف نمایی اشعه ایکس با گذارهای الکترون‌های داخلی مربوط می‌کند. طیف‌های نوری ، طول موج‌های خیلی کوتاه از الکترون‌های خارجی عناصری با درجه یونش بسیار بالا به وجود می‌آیند

کاربرد‌های فیزیک امواج الکترومغناطیسی

الف : کاربردهای فیزیک امواج الکترومغناطیسی در مخابرات

از این جمله می‌توان فیبر نوری ، دستگاه رله تلفن ، موجبرها ، ماهواره و; اشاره کرد

 ب : کاربرد‌های فیزیک امواج الکترو‌مغناطیسی در نظامی

مانند بمب الکترومغناطیسی ، انواع رادار ، ردیابهای موشک و;

ج : کاربردهای فیزیک امواج الکترو مغناطیسی در پزشکی

از قبیل عکسبرداری مغناطیسی ، رادیولوژی ، سونوگرافی با لیزر ، کاربرد اشعه ایکس و گاما در فیزیک پزشکی و;

 د: کاربردهای فیزیک امواج الکترومغناطیسی در صنعت

انواع برشکاری‌های لیزری ، قطار الکترو‌مغناطیسی و صندلی مغناطیسی و;

ه : کاربردهای فیزیک امواج الکترومغناطیسی در اخترشناسی

با مطاله طیف الکترومغناطیسی گسیل شده از جو می‌توان به ساختار اجرام آسمانی پی‌برد

مغناطیس سلطان میدان ها

     مغناطیس و الکتریسیته تاریخی طولانی و درازی دارند. الکتریسیته و مغناطیس ابتدا در قرن هشتم قبل از میلاد مورد توجه یونانیان باستان قرار گرفتند. مهمترین عاملی که موجب جذب و توجه مردم به الکتریسیته ومغناطیس شد، دو ماده طبیعی کهربا و کانی مگنتیت(سنگ مغناطیس) بود. کهربا، شیره برخی از درختانی است که چوب نرمی دارند؛ هنگامی که این شیره از درخت بیرون می آید، پس از مدتی سفت می شود. این جامد سفت که رنگی بین قهوه ای و زرد دارد، کهرباست. و اگر کهربا را به پارچه ای بمالیم، باردار شده و می تواند تکه های برگ یا کاغذ را جذب کند

سنگ مغناطیس، همان اکسید آهن است؛ که براده های آهن را جذب می کند. سنگ های مغناطیسی می توانند یکدیگر را جذب کنند. و علت این نامگذاری آنست که این سنگ در منطقه ای به نام “مگنزیا” یا “مغناطیس” برای نخستین بار کشف شد. که به ماهیت این سنگ، مغناطیس گفته می شود. اگر یک تکه از این سنگ ها را بر روی آب شناور کنیم، جهت آن در راستای شمال-جنوب قرار می گیرد. همین خاصیت سنگ مغناطیسی سبب شد که در قرون

گذشته دریانوردان از آن بعنوان جهت یاب استفاده کنند

دموکریتوس، که یکی از فلاسفه بزرگ باستان و بنیانگذار تئوری اتمی است، معتقد است که میان سنگ مغناطیسی جریانی از ذرات بسیار ریز به نام اتم وجود دارد. و در این جریان هنگامی که اتم به آهن یا سنگ مغناطیسی دیگر برخورد می کند، در برگشت به سوی سنگ مناطیس، سبب می شود که آهن را به دنبال خود بکشاند. ویلیام گیلبرت یکی از نخستین دانشمندانی است که در زمینه مغناطیس دست به آزمایش ها و بررسی های اساسی کرد. او مشاهده کرد که براده های آهن در اطراف سنگ مغناطیس در راستای منظمی قرار می گیرند. و همچنین سنگ مغناطیس در حالت آویزان یا حتی سوزن های آهنی در حالت شناور در راستای شمال-جنوب قرار می گیرند. او چنین پنداشت که علت این امر آنست که زمین یک سنگ مغناطیس بسیار بزرگیست که اینگونه عمل می کند. او برای اثبات نظریه خود، یک سنگ مغناطیس را به صورت یک کره بزرگ در آورد و سپس در اطراف و بر روی سطح این کره، سنگ های مغناطیسی کوچک و براده های آهنی قرار داد و مشاهده کرد که این براده ها در راستای شمال-جنوب قرار     می گیرند

    قبل از اینکه به بحث در مورد خطوط و میدان مغناطیسی آهنربا و زمین بپردازیم، لازم است که به قطب های مغناطیسی و خاصیت آن اشاره ای کنیم

    در آهنربا یا همان سنگ مغناطیسی، دو ناحیه وجود دارد که نسبت به سایر نقاط دیگر آهنربا، خاصیت جذب براده های آهن بیشتر و راستای این براده ها به سمت این نواحی است. که به این دو ناحیه، قطب های مغناطیسی می گویند. اگر آهنربا را شناور قرار دهیم، قطبی که به سمت شمال است را قطب شمال یا شمال یاب، و قطب مقابل آن را قطب جنوب یا جنوب یاب می گویند. پس هر ماده مغناطیسی از دو قطب شمال وجنوب تشکیل شده است. در مغناطیس مانند الکتریسیته، قطب های ناهمنام یکدیگر را جذب و قطب های همنام یکدیگر را دفع می کنند. پس در خاصیت مغناطیسی، نیروی دفع وجذب نیز وجود دارد. آزمایش ها نشان می دهد که اگر در اطراف یک آهنربا، قطب نما یا سنگ های مغناطیسی کوچک قرار دهیم، نیروی حاصله از مغناطیس بر قطب های آن ها اثر گذاشته، به طوری که قطب شمال قطب نما به سمت قطب جنوب آهنربا و بلعکس قرار می گیرد. و این نشان می دهد، که در نقاط اطراف آهنربا، نیرویی وجود دارد که بر قطب های قطب نما وارد می شود و آن را در راستای مشخصی قرار می دهد. که به مجموعه ای از این نیروها یا نقاط، میدان مغناطیسی می گویند. میدان مغناطیسی اطراف آهنربا را توسط خطوطی نشان می دهند که این خطوط قطب جنوب(s) را به قطب شمال(n) وصل می کند. و جهت این خطوط از شمال(n) به جنوب(s) است. خطوط میدان مغناطیسی ویژگی هایی دارند که عبارتند از

1 –  خطوط همانطور که قبلا گفته شد راستاو جهتشان از شمال به جنوب است

2 – خطوط یکدیگر را قطع نمی کنند

3 – تراکم خطوط در نزدیکی قطب ها بیشتر از نواحی دیگر است و این نشان دهنده آن است که نیروی مغناطیسی در این نواحی زیاد است

4-  برآیند نیروهای مماس بر خطوط میدان در یک نقطه برابر با نیروی مغناطیسی در آن نقطه است

اکنون به سراغ علت تاثیر نیروی مغناطیسی بر براده های آهن می رویم. می دانیم که الکترون در ساختار تمام اجسام وجود دارد که الکترون ها دارای دو قطب مغناطیسی می باشند. بنابراین می توان نتیجه گرفت که تمام اجسام از ذراتی

تشکیل شده اند که دارای دو قطب مغناطیسی هستند که به این ذرات، دو قطبی مغناطیسی می گویند و به موادی که دارای دوقطبی مغناطیسی هستند، مواد مغناطیسی می گویند. البته لزومی ندارد که بگوییم این دوقطبی ها همان الکترون ها هستند بلکه این دوقطبی ها ذرات بنیادی مغناطیس هستند همانطور که از الکترون بعنوان بار بنیادی در الکتریسیته یاد می کنیم. این دوقطبی های مغناطیسی مانند یک آهنربا عمل می کنند و در اطراف خود میدان مغناطیسی تولید می کنند. آهن نیز دارای این دوقطبی های مغناطیسی است اما در آهن دو قطبی های مغناطیسی به گونه ای رفتار می کنند، که خاصیت مغناطیسی یکدیگر را خنثی می کنند. و هنگامی که در یک میدان مغناطیسی قرار می گیرند، بر این دوقطبی ها نیروی مغناطیسی وارد می شود، به طوری که قطب شمال تمام این دوقطبی ها در جهت خطوط میدان قرار می گیرند. و آهن ساختار ساختمانی منظمی پیدا می کند و به یک آهنربا تبدیل می شود. که از آن می توان بعنوان یک قطب نما استفاده کرد. اگر این آهنربا را به دوقسمت تقسیم کنیم، این آهنربا باز هم خاصیت مغناطیسی خود را حفظ می کند، زیرا دوقطبی های مغناطیسی در یک جهت قرار دارند و این دو قطبی ها عامل ایجاد خاصیت مغناطیسی در آهنربا هستند

    سوالی که پیش می آید این است که آیا فقط آهن تحت تاثیر میدان مغناطیسی قرار می گیرد؟ برای پاسخ به این سوال برمی گردیم به مواد مغناطیسی که از دو قطبی های مغناطیسی تشکیل شده اند در مواد مغناطیسی، حرکت و رفتار دوقطبی ها به گونه ای است که اثر میدان مغناطیسی یکدیگر را خنثی می کنند. مواد مغناطیسی از نظر رفتار دوقطبی های مغناطیسی به سه دسته تقسیم می کنند

الف) مواد پارامغناطیس                                ب) مواد دیامغناطیس                             پ) مواد فرومغناطیس

الف) مواد پارامغناطیس: موادی هستند که حرکت و جنبش دوقطبی هایشان راحت و آسان تر است. هنگامی که این مواد را در میدان مغناطیسی قرار دهیم، بر دوقطبی های آن نیرو وارد شده و تعداد زیادی از آن ها در خطوط میدان به طوری که قطب های شمال در جهت خطوط قرار می گیرند. و این امر سبب می شود که این مواد به یک آهنربای قوی تبدیل شود. اما چون حرکت وجنبش این دو قطبی ها سریع است، با برداشتن این مواد از میدان مغناطیسی، این دوقطبی ها به سرعت از مسیر خطوط خارج و به حالت کاتوره ای قبلی برمی گردند و این مواد در خارج از خطوط میدان به سرعت خاصیت مغناطیسی خود را از دست می دهند. مانند آلومینیوم

ب) مواد دیامغناطیس : مواد دیامغناطیس موادی هستند که اگر در میدان مغناطیسی قرار بگیرند از آهنربا دفع می شوند. در این مواد برآیند گشتاور دو قطبی مغناطیسی صفر است و در واقع فاقد دوقطبی ذاتی هستند و هنگامی که در میدان مغناطیسی قرار می گیرند، گشتاور دو قطبی در آن ها القا می شود اما جهت این دوقطبی های القا شده بر خلاف جهت میدان مغناطیسی خارجی می باشد و این امر باعث می شود که ماده دیامغناطیس از میدان مغناطیسی دفع شود. البته این خاصیت در تمام مواد وجود دارد، و هنگامی این خاصیت در مواد ظاهر می شود که خاصیت پارامغناطیسی آن ها ضعیف باشد.مانند: بیسموت

پ) مواد فرومغناطیس : این مواد مانند مواد پارامغناطیس است اما با این تفاوت که در این مواد مجموعه ای از دوقطبی های مغناطیسی در یک جهت و راستا قرار دارند که این مجموعه ها در راستا و جهت های متفاوتی قرار دارند به طوری که اثر میدان یکدیگر را خنثی می کنند. که به این مجموعه از دوقطبی های مغناطیسی که در یک استا قرار

دارند، حوزه مغناطیسی می گویند. هنگامی که این مواد در میدان مغناطیسی قرار می گیرند، بر حوزه های مغناطیسی نیرو وارد می شود و آن ها را در جهت میدان قرار می دهند. خاصیت مغناطیسی این مواد به سرعت تغییر مسیر این حوزه ها و قرار گرفتن در جهت میدان بستگی دارد. که از این لحاظ مواد فرومغناطیس را به دو دسته تقسیم         می کنند

1- مواد فرومغناطیس نرم : در این مواد سرعت تغییر حوزه ها بسیار آسان و سریع است و به همین خاطر در میدان مغناطیسی این حوزه ها به سرعت در جهت خطوط میدان قرار می گیرند و خاصیت مغناطیسی بسیار قوی بدست می آورند. اما همینکه این مواد را از میدان دور کنیم، جهت این حوزه ها به سرعت تغییر و به حالت کاتوره ای قبلی بر می گردند. مانند آهن

2- مواد فرومغناطیسی سخت: در این مواد سرعت تغییر حوزه ها بسیار سخت و کُند است و همین که در میدان قرار می گیرند، این حوزه ها به کندی در جهت خطوط قرار می گیرند و خاصیت مغناطیسی آن ها نسبت به مواد فرومغناطیس نرم ضعیفتر است؛ اما همین که از میدان دور می شوند بر خلاف مواد فرومغناطیس نرم خاصیت مغناطیسی خود را حفظ می کنند.مانند آلیاژ های نیکل

    پس مواد پارامغناطیس و فرومغناطیس تحت تاثیر میدان مغناطیسی قرار می گیرند و به یک آهنربا تبدیل        می شوند

    در قرن هیجدهم هانس اورستد نشان داد که در اطراف سیم حامل جریان میدان مغناطیسی ایجاد می شود و بعد ها آمپر و مایکل فارادی در این زمینه دست به فعالیت های گسترده ای زدند. آن ها نشان دادند که در اطراف یک سیم حامل جریان، میدان مغناطیسی تولید می شود و حتی موفق شدند که روابط کمی آن را محاسبه کنند. بنابراین منبع تولید میدان مغناطیسی عبارتند از:سنگ مغناطیس یا همان آهنربای طبیعی و جریان الکتریکی. البته بعدها ماکسول نتیجه گرفت که بر اثر تغییر جریان الکتریکی، میدان مغناطیسی در فضا منتشر می شود و همچنین براثر تغییر میدان مغناطیسی، جریان الکتریکی در فضا تولید می شود که نتیجه این، امواج الکترومغناطیسی است

    و از طرفی تغییر میزان عبور میدان مغناطیسی از یک رسانا، باعث تولید جریان الکتریکی در همان رسانا می شود. پس منبع تولید میدان الکتریکی عبارتند از: اختلاف پتانسیل بین دو سر رسانا و تغییر شار(میزان عبور میدان) مغناطیسی است

    پس می توان اینگونه نتیجه گرفت که الکتریسیته و مغناطیس باهم در ارتباطند و به جر‌‌أت می توان گفت که یکی بدون دیگری معنی ندارد. چون وجود یکی باعث پیدایش دیگری می شود

    می دانیم که ذرات باردار تحت تاثیر میدان الکتریکی یا نیروی کولنی قرار می گیرند. اگر این ذرات وارد میدان مغناطیسی شوند تحت تاثیر نیروی دیگری که همان نیروی مغناطیسی است می شوند. آزمایش ها نشان می دهند که میزان انحراف ذره باردار به بزرگی میدان، اندازه بار، سرعت و زاویه حرکت ذره بستگی دارد. اگر این ذره در راستای خطوط میدان حرکت کند، هیچ نیرویی مغناطیسی بر آن وارد نمی شود. نیروی مغناطیسی بر راستای حرکت ذره عمود است و بر سرعت آن تاثیری نمی گذارد و فقط جهت بردار حرکت آن را تغییر می دهد. به همین دلیل اگر ذره باردار وارد میدان مغناطیسی شود حرکت مارپیچی یا دایره ای خواهد داشت. اگر ذره به طور عمود بر راستای خطوط

وارد میدان شود، چون اندازه سرعتش ثابت و نیروی وارده بر آن عمود بر جهت حرکت است، شتاب مرکز گرا خواهد گرفت و این امر موجب می شود که ذره در میدان یک مسیر دایره ای داشته باشد. البته ذره باردار بر اثر حرکتش مقداری از انرژی خود را به صورت امواج الکترومغناطیسی گسیل می کند و انرژی آن کاهش و سرعتش کم می شود و به همین خاطر شعاع حرکت دایره ای آن در طی مدت زمانی، کوچک و کوچکتر می شود. و اگر به صورت غیر عمود بر خطوط میدان وارد شود، حرکت مارپیچی خواهد داشت

    همین خاصیت ذرات باردار در میدان مغناطیسی سبب می شود که ما را از آسیب های ذرات باردار و پرانرژی کیهانی که به زمین برخورد می کنند، مصون نگاه دارد

    در اطراف کره زمین میدان مغناطیسی وجود دارد و طبق نظریه ای که گیلبرت پیشنهاد کرد، زمین یک آهنربای بزرگی است که قطب شمالش در قطب جنوب جغرافیایی و قطب جنوب مغناطیسی در قطب شمال جغرافیایی قرار دارد که میدان مغناطیسی در این دو قطب نسبت به سایر نواحی دیگر کره زمین قوی تر می باشند. ذرات باردار و پر انرژی کیهانی که به سوی زمین می آیند گرفتار میدان مغناطیسی زمین شده و حرکت مارپیچی به خود می گیرند که به این منطقه، کمربند “وان آلن” می گویند.این ذرات با حرکت مارپیچی خود به سمت دو قطب حرکت می کنند. این ذرات با نزدیک شدن به دو قطب بر اثر برخورد به لایه های بالایی جو قطب شمال و جنوب، مقدار زیادی از انرژی خود را ازدست می دهند که به صورت تابش آزاد و روشنایی را در دو قطب ایجاد می کنند که به این روشنایی، شفق های قطبی می گویند

دریافت این فایل

برای دریافت پروژه اینجا کلیک کنید

تحقیق حل عددی معادله توماس – فرمی برای لبه ژلیوم نیم فضا و ربع فضا

برای دریافت پروژه اینجا کلیک کنید

 تحقیق حل عددی معادله توماس – فرمی برای لبه ژلیوم نیم فضا و ربع فضا دارای 89 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد تحقیق حل عددی معادله توماس – فرمی برای لبه ژلیوم نیم فضا و ربع فضا  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه تحقیق حل عددی معادله توماس – فرمی برای لبه ژلیوم نیم فضا و ربع فضا

فصل اول: مقدمه
فصل دوم: مدل ژلیوم و مدل توماس فرمی  
2-1) مدل ژلیوم         
2-2)مدل توماس- فرمی     
فصل سوم: روش حل عددی معادلات دیفرانسیلی توماس – فرمی در مدل ژلیوم  
3-1) کلیات      
3-1-1) مسائل با شرایط اولیه         
3-1-2) مسائل با شرایط مرزی     
3-2)روش حل عددی معاد لات دیفرانسیل معمولی مرتبه اول با شرایط اولیه      
3-2-1) روش اولر      
3-2-2) روش رونگ – کوتا      
3-2-2-1) روش رونگ – کوتا مرتبه دوم     
3-2-2-2) روش رونگ کوتا مرتبه چهارم    
3-3) روش تکرار کننده در حل معادلات دیفرانسیل معمولی و پاره ای با شرایط مرزی     
3-3-1) روش تکرار برای حل معادلات دیفرانسیل معمولی     
3-3-2) روش تکرار برای حل معادلات دیفرانسیل پاره ای  
فصل چهارم: قوانین جمع  
4-1) کلیات      
4-2) کاربردهای قوانین جمع         
4-3) بدست آوردن قوانین جمع     
4-4) نظریه هلمن- فاینمن         
4-5) کاربرد نظریه هلمن-فاینمن برای سطح ژلیوم و بدست آورن قانون اول جمع      
4-6) بدست آوردن قوانین جمع با استفاده از نظریه اختلال روی حالت پایه      
فصل پنجم: حل عددی معادله توماس فرمی در مدل ژلیوم  
5-1) حل عددی معادله توماس فرمی برای حالت یک بعدی در مدل لبه ژلیوم نیم فضا (در فضای محدود)       
5-1-1) حل عددی معادله توماس فرمی برای حالت یک بعدی در مدل لبه ژلیوم نیم فضا; درون نیم فضای ژلیوم (x<0)         
5-1-2) حل عددی معادله توماس فرمی برای حالت یک بعدی در مدل لبه ژلیوم نیم فضا; درون نیم فضای غیر ژلیوم (x0)     
5-2) حل عددی معادله توماس فرمی برای حالت دو بعدی در مدل لبه ژلیوم ربع فضا (در فضای محدود)       
5-3) حل عددی معادله توماس فرمی برای حالت  یک و دو بعدی در مدل ژلیوم در فضای نامحدود    
5-4) بررسی صحت یا سقم نتایج حل عددی معادله توماس – فرمی در مدل ژلیوم با استفاده از قوانین جمع        
فصل ششم: نتیجه گیری  
فهرست مراجع  

بخشی از فهرست مطالب پروژه تحقیق حل عددی معادله توماس – فرمی برای لبه ژلیوم نیم فضا و ربع فضا

1- کیتل، چ.،پور قاضی وصفاوعمیقیان ، 1367 ، آشنایی با فیزیک حالت جامد ، تهران ، مرکز نشر دانشگاهی

عمر،ع. ،نبیونی ،1380 ،فیزیک حالت جامد،اراک ، دانشگاه اراک ،جلد اول . 2-

3- هوک ،ج  و هال ،ا .،اکبر زاده و بابایی و صفا ،1379 ، فیزیک حالت جامد، اصفهان، دانشگاه صنعتی اصفهان،ویرایش دوم

4-  موسوی ،ف و نوری امامزاده ئی،م . ، 1380 ، کاربرد روشهای عددی در منابع آب ، اصفهان ، ارکان  

5-  مهری ،ب .،1383  ، محاسبات عددی ، تهران،جهاد دانشگاهی صنعتی امیر کبیر

6- S .E.Koonin,  Computational physics و  ( fortran version ). (1998)

 7- A.Kiejna, Metal Electron Surface Physics, (1996)

 8- Numerical recipes in fortran 77 : the art of scientific  computing

 ( isbn- 0 -521 – 43064-x). Copyright ( c) 1986 – 1992 by Cambridge university press

9- N.W.Ashcroft and N.D.Mermin, Solid State Physics (1976)

  10- M.Farjam,Physica  B   569   (2005)

” Energy of step formation on metal surfaces from stabilized jellium model”

 11- G .Shreckenbach * و R.Kaschner و  and Zieche  و  Phys.Rev.B  46,  (1992)

“Force sum rules , strees theorems , and Thomas-Fermi treatment of a 90o jellium edge”

 12- J.Vannimenus and H.F.Budd , solid state commun.15, 1739 (1974)

“Sum-rules and the surface energy of metals

 13- p.streitenberger , Phys.Solid State Commun. (1994)

“Sum rules for the uniform-background model of an atomic-sharp metal corner”

 

 چکیده:

ژلیوم یا مدل ژله ای مدلی است که در آن یونهای مثبت به صورت زمینه ای یکنواخت در نظر گرفته می شوند.سیستم مورد نظر یک سیستم الکترونی بس ذره ای خواهد بود که فقط به صورت تقریبی قابل تحلیل می باشد. ما می خواهیم معادله توماس-فرمی را که توصیف تقریبی ساده ای از سیستم بس ذره ای است برای مدل ژلیوم نیم فضا و ربع فضا حل کنیم. قوانین جمع سطح ژلیوم به عنوان قضایای بد-ونیمنوس شناخته می شوند که روی قضیه هلمن-فاینمن پایه گذاری شده و روابط مفیدی را بین خواص سطحی وحجمی ژلیوم برقرار می کنند.در حقیقت این قضایا ثابت شدند که ابزار مفیدی برای بررسی خود سازگار نتایج عددی باشند. نتایج عددی ما از حل معادله توماس فرمی حاکی از درستی قوانین جمع بد-ونیمنوس می باشد.البته بعضی قضایای مخصوص یا قوانین جمع دیگر توسط استریتنبرگر ثابت شده اما بصورت عددی آزمایش نگردیده که نتایج عددی ما نادرستی آنها را نشان میدهد

مقدمه

روشهای اصول اولیه مختلفی برای محاسبه ساختمان الکترونیکی اتمها، مولکولها و جامدات وجود دارد که دو صورت آنها عبارتند از 1- نظریه تابعی چگالی [1] 2- نظریه هارتری-فوک [2] روشهای تابعی چگالی بطور وسیع در مطالعه جامدات مورد استفاده واقع می شوند زیرا این روش شناسایی خیلی ساده تر و از نظر محاسباتی نیز ارزانتر می باشد. روشها هارتری – فوک بعلت داشتن محاسبات خیلی زیاد که هزینه های زیادی را در بر می گیرند در جامدات بکار برده نمی شوند. در روش هارتری -فوک فرض می شود که الکترونها در مولکول یا جامدات می توانند بصورت ذرات مستقل رفتار کنند البته این بدین معنی نیست که کنش متقابل بین آنها و هسته نادیدگرفته شود. نظریه هارتری – فوک تنها یک تقریب است. الکترونها راقعاً مستقل از یکدیگر حرکت نمی کنند بلکه حرکتشان همبسته بوده و این حرکت همبسته یک انرژی پایین تری را در مقایسه با موقعیت غیر همبسته نتیجه می دهد. اختلاف انرژی بین موقعیتهای همبسته و غیر همبسته انرژی همبستگی نامیده می شود[3]. با توجه به اینکه الکترونها بعلت داشتن چرخش (اسپین) فرمیون بوده و فرمیونها از اصل طرد بائولی تبعیت می کنند لذا یک عدم تقارن در تابع موج الکترون وجود دارد. این عدم تقارن تابع موج یک قسمت دیگری بنام انرژی تبادلی[4] را به انرژی کل سیستم وارده می کند نظریه هارتری – فوک می تواند به طور کامل انرژی تبادلی یک سیستم الکترونی را محاسبه کند اما در محاسبه انرژی همبستگی بعلت فرض مستقل بودن الکترونها از یکریگر ناتوان می باشند

بناراین روش هارتری – فوک کارایی لازم نداشته، ضروریست روش جایگزین دیگری معرفی گردد که در آن الکترونها بعنوان مجموعه ای از ذرات مستقل فرض شده اما با این تفاوت که بتوان هر دو انرژی تبادلی و همبستگی را هر چند بصورت تقریبی محاسبه کرد. این روش، روش تابعی چگالی بوده که برای استفاده در مدل ژلیوم  بسیار سودمند می باشند. مدل ژلیوم از مدل الکترون آزاد در فلزات تبعیت میکند. محاسبات مدرن در خصوص بررسی خواص الکترونیکی فلزات با توصیف چگالی الکترون  در حضور چگالی یکنواخت یونهای فلزات شروع می شوند . این توصیف یعنی توزیع الکترونها در گستره ای یکنواخت از بارهای مثبت همان مدل ژلیوم می باشد. در این مدل توزیع یکنواخت بار مثبت با یک تابع پله ای  با حضور سطوح باعث ایجاد ناپیوستگی در توزیع چگالی الکترون در سطح می شود. خیلی دور از سطوح ژلیوم بعلت یکنواختی توزیع  بارهای مثبت در کلیه یک همسانگری و در سطح ژلیوم یک عدم توازن بار یک اختلاف پتانسیل وجود دارد. موضوع اصلی در روشهای نظریه تابعی چگالی جایگزینی یک مسئله N بعدی با تعدادی الکترون غیر قابل تمییز بجای  تعداد N مسئله تک الکترونی با یک پتانسیل موثر است که  تابعی از چگالی الکترون می باشند. این پتانسیل شامل قسمتهای اصلی هسته- الکترون، الکترون- الکترون و نیز قسمت دیگری که تبادل و همبستگی بین الکترونها را توصیف می کنند می باشد. در مورد خاص ژلیوم، هر دو قسمت اول در حجم[5]  ژلیوم حذف می شوند زیرا چگالی های هر دو بارمثبت و منفی یکنواخت هستند و دو قسمت آخر معمولاً با هم  به عنوان انرژی های تبادلی و همبستگی (Exc)بکار بوده می شوند. لذا بر خلاف روش هارتری-فوک انرژی همبستگی نیز قابل محاسبه می باشد. لانگ و کوهن [6] افرادی بودند که با استقاده از روش تابعی چگالی در مورد مدل ژلیوم بسیار مطالعه نمودند. سی و پنچ سال از زمان کار اولیه آنها با توسعه رایانه ها این مدل توسعه یافته و در حل بسیاری از مسائل فیزیک مورد استفاده واقع گردید. ما نیز در این تحقیق به حل عددی معادله توماس- فرمی که توصیف تقریبی ساده ای از سیستم بس ذره ای است برای مدل ژلیوم نیم فضا و ربع فضا پرداخته ایم. هدف ما از حل این مسئله صحه گذاری بر قواعد جمع بد-ونیمنوس[7] برای این مدل بوده و این مستلزم داشتن مقادیر عددی دقیق از کمیتهای موجود در سیستم مانند تابع پتانسیل یا انرژی پتانسیل       می باشد

2-1) مدل ژلیوم

همان گونه که می دانیم نظریه ساده مدل الکترون آزاد در توضیح خواص خیلی از فلزات بسیار کار آمد است. بدین منظور فرض می شود که الکترونهای رسانشی کاملاً آزاد هستند و فقط یک پتانسیل در سطح نمونه بر آنها مطابق شکل زیر اعمال می گردد

در نتیجه اعمال این پتانسیل الکترونها در داخل نمونه محبوس می شوند. در این مدل بجز بازتابهای نادری که الکترونها از سطح نمونه می کنند الکترونهای رسانش بدون هیچ گونه برخوردی، در داخل نمونه حرکت کرده و رفتاری شبیه رفتار یک گاز ایده آل دارند بهمین دلیل ما صحبت از گاز الکترون آزاد می کنیم. با نگاه دقیق تر این سوال در ذهن مطرح می گردد که چگونه این مدل می تواند معتبر باشد در حالیکه انتظار می رود الکترونها با یونهای زمینه و همچنین با همدیگر بر هم کنش داشته باشند. با توجه به اینکه این بر هم کنش ها قوی هستند باید الکترونها برخوردهای متعددی داشته باشند لذا تصویری از یک گاز کاملاً غیر ایده آل در ذهن مجسم می شود. پس چرا مدل الکترون آزاد جواب می دهد؟ پاسخ این سوال برای کسانی که این مدل را برای اولین بار ارائه دادند معلوم نبود ولی حالا جواب آن را با دلایل زیر بیان می کنیم

دلیل اینکه چرا فرض شد بر هم کنش بین یون ها جواب می دهد این است که اگر چه یک الکترون با یون بر هم کنش کولنی دارد ولی آثار کوانتومی، یک پتانسیل دفعی اضافه معرفی می کند که تمایل به حذف بر هم کنش جذبی دارد که این پتانسیل خالص شبه پتانسیل[8] نام دارد و بخصوص در مورد فلزات قلیائی عمل می کند. دلیل دیگر در این خصوص این است که الکترون فقط کسر کوچکی از وقت خود را در نزدیکی یون که پتانسیل در آنجا قوی است می گذراند و اغلب اوقات، الکترون در نواحی دور از یون، یعنی جائیکه پتانسیل ضعیف است می باشد. دو دلیل برای ضعیف بودن بر هم کنش بین خود الکترونها وجود دارد؛ اول اینکه طبق اصل طرد پائولی الکترونهای با اسپین مداری تمایل دارند از یکدیگر دور بمانند. دوم اینکه حتی اگر اسپین ها مخالف باشند به منظور کمینه کردن انرژی سیستم، الکترونها تمایل دارند از یکدیگر دور بمانند. اگر دو الکترون خیلی به یکدیگر نزدیک شوند، انرژی پتانسیل بطور فزاینده ای بزرگ می شود که این بر خلاف تمایل سیستم الکترونی به داشتن کمترین انرژی ممکن است

از نظر ریاضی هر الکترون توسط ناحیه ای کروی که از الکترونهای دیگر خالی است احاطه شده است این ناحیه حفره فرمی نامیده می شود و شعاعی در حدود  دارد که مقدار دقیق این شعاع به چگالی الکترونی بستگی دارد. با حرکت الکترون حفره آن نیز با آن حرکت می کند. اگر برهم کنش بین دو الکترون خاص را مشاهده کنیم در می یابیم که الکترونهای دیگر خود را به گونه ای توزیع می کنند که این دو الکترون خود را از یکدیگر محافظت نمایند. در نتیجه بر هم کنش خیلی کوچکی بین آنها وجود دارد

جدا شدن الکترونهای رسانش از یک اتم مغز یونی با بار مثبت به جای می گذارد. در این مدل توزیع یون های مثبت فلزی به طور یکنواخت در درون نمونه و سر تا سر فلز در نظر گرفته می شوند لذا یک زمینه با بار مثبت[9]  وجود دارد که به دلیل توزیع یکنواخت میدان الکتریکی اعمال شده از طرف آنها بر الکترون ها صفر بوده است به گونه ای که الکترون ها در یک فضا با پتانسیل الکترواستاتیکی ثابت حرکت است این مدل الکترونی که در آن یون های مثبت به صورت ژله یکنواخت توزیع شده است را مدل ژله ای یا ژلیوم[10] می نامند. یون ها یک ژله یکنواختی را تشکیل می دهند که الکترونها درون آن حرکت می کنند بنابراین در توصیف خواص فلزات با مدل الکترون آزاد فضای داخل فلز را ژلیوم و سطوح یا لبه فلز را لبه ژلیوم      می نامیم موضوع بحث ما در این تحقیق ژلیوم نیم فضا [11]  و ربع فضا[12] می باشد

2)مدل توماس- فرمی [13]

[1] – Density Functional Theovye DFT

[2] – Hartree – Fock – HF

[3] – Correlation

[4] – Exchange

[5] – bulk

[6] -Lang and Kohn

[7] -Budd-Vannimenus

[8] – Pseudo potential

2.Posetive back ground

3. jellium

1- half space jellium

2- quarter- space jellium

3 – Thomas Fermi-model

 

دریافت این فایل

برای دریافت پروژه اینجا کلیک کنید

مقاله طراحی و ساخت نیروگاه تولید انرژی گازسوز

برای دریافت پروژه اینجا کلیک کنید

 مقاله طراحی و ساخت نیروگاه تولید انرژی گازسوز دارای 61 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله طراحی و ساخت نیروگاه تولید انرژی گازسوز  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه مقاله طراحی و ساخت نیروگاه تولید انرژی گازسوز

1-هدف و دیدگاه کلی  
1-1- مقدمه  
2-1-منابع و استانداردها  
2-اطلاعات فنی  
1-2-شرایط محیط :  
2-2- اطلاعات مربوط به خط لوله انتقال گاز از خط لوله سراسری به داخل نیروگاه  
3-توضیحات فنی  
1-3-ورودی سیستم  
2-3-فیلترهای تصفیه کننده گاز  
3-3-واحد اندازه گیری دبی  
انتخاب کنتور  
اصول کار کنتور توربینی:  
4-3- ایستگاه تقلیل فشار  
5-3- واحدهای اندازه گیری برای هر واحد از بویلرها  
6-3- سیستم سوخت گازهای مضر و زائد (FLARE)  
7-3- فلسفه کنترل  
8-3- مسیر یابی و نصب خطوط لوله گاز  
زنگ زدایی و آماده سازی لوله  
پوشش گذاری و عایقکاری لوله های گاز  
رعایت اصول نوارپیچی بر روی لوله ها  
تست صحت انجام عایقکاری  
عایقکاری گرم  
بررسی و سنجش در کیفیت عایقکاری  
فیلترهای تصفیه گاز  
1-مقدمه  
2-کد و استاندارد  
3-شرایط طراحی و عملکرد  
2-3- فشار  
3-3-دما  
4- دیدگاه کلی و عمومی  
5-کنترل  
6- MATERIAL  
7- ساخت  
8- رنگ کاری  
9- تست  
10-بازرسی  
انتخاب فیلتر  

1-1- مقدمه

با گذشت زمان و پیشرفت تکنولوژی در زمینه نفت و گاز هر روز شاهد هستیم که سیستم های قدیمی که با انواع سوخت فسیلی سنگین مانند مازوت و نفت و گازکار می­کردند دچار تغییر و دگرگونی می­شوند.ا مروزه بدلیل مسائل و مشکلات زیست محیطی و آلودگی ناشی از سوخت اینگونه سوخت های فسیلی، پائین بودن راندمان حرارتی، عمر کم تجهیزاتی که در ارتباط با این سوختها هستند و غیر اقتصادی بودن آنها دیده می شود که صاحبان صنایع به فکر جایگزینی این منابع با گروه دیگری از سوخت ها هستند یکی از بهترین جایگزین ها گاز طبیعی است که هم ارزان و در دسترس بوده و علاوه بر آن آلودگی بسیار کمی برای محیط بوجود می آورد

در ادامه در طی این طراحی هدف تبدیل یک نیروگاه تولید انرژی مازوت سوز به یک نیروگاه تولید انرژی گازسوز می باشد بدیهی است که این نیروگاه در سیکل رانکین کار می کند بنابراین کافی است سیستم تولید انرژی نیروگاه از حالت مازوت سوز به گاز سوز تبدیل شود. این عملیات از خط انتقال سراسری گاز شروع شده و تا مشعل های مربوطه به هر دیگ بخار ادامه دارد

بدلیل اهمیت طرح و استراتژیک بودن فعالیت یک نیروگاه هیچگاه نباید نیروگاه بر اثر قطع جریان گاز دچار خاموشی شود به همین دلیل طراحی باید به گونه‌ای باشد که هر گونه استرس ناشی از وزن و تنش های حرارتی که ممکن است در هنگام نصب تجهیزات و در زمان عملکرد سیستم بروز کند را تحمل نموده و علاوه بر آن هر گونه دبی ناگهانی و فشار تناوبی را که حداکثر آنها کمتر از شرایط تست است را تحمل کند

با توجه به مطالب فوق باید برای تعمیرات و نگهداری سیستم مربوطه اقدام لازم را بعمل آورد. این مطلب بیانگر آن است که در دسترس بودن تجهیزات و سایر اجزا که نیاز به تعمیر و نگهدرای و تعویض دارند از اهمیت خاصی برخوردار است این دسترسی شامل دسترسی اپراتور به تجهیزات، دسترسی ماشین آلات حمل و نقل برای تجهیزات سنگین می باشد که باید جاده های مورد نظر به طور کامل در نظر گرفته شود

برای عملکرد بهینه سیستم و کنترل مناسب نیازمند یک سری تجهیزات ابزار دقیق هستیم که در ادامه به طور مفصل در بخش های جداگانه به هر یک از موارد فوق خواهیم پرداخت

2-اطلاعات فنی

1-2-شرایط محیط

– دما :           حداکثر – حداقل- متوسط       (Cْ)55/-10/

-رطوبت نسبی: حداکثر – متوسط                  100%- 69%

-کد زلزله :                                           (براساس کد french) 1,

-ارتفاع از سطح دریا:   نیروگاه در ارتفاعی هم سطح با دریاست

-سرعت باد     حداکثر- حداقل                            31-2 (M/S)

2-2- اطلاعات مربوط به خط لوله انتقال گاز از خط لوله سراسری به داخل نیروگاه

-دبی حجمی                          824/0      Nm3/hr

-فشار عملکرد                        8-10              barg

-فشار طراحی                        16                 barg

– طول تقریبی                         600                  M

3-توضیحات فنی

1-3-ورودی سیستم

همانطور که گفته شد گاز مورد نیاز از خط لوله سراسری گاز تأمین می شود پس از انشعاب از خط لوله سراسری، گاز وارد سیستم سوخت نیروگاه می شود. برای جداسازی سیستم از خط لوله یک شیر اصلی که وظیفه قطع و وصل جریان گاز را به عهده دارد تعبیه شده است. این شیر به طور خودکار به وسیله سیگنالهایی که دربافت می کند عمل می کند. هر گاه فشار گاز در سیستم بیش از حد بالا یا پائین برود این شیر بطور خودکار قطع می شود در ضمن هر گاه دمای مشعل های دیگ های بخار بسیار بالا رود این شیر به طور خودکار بسته می‌شود

پس می توان گفت سیگنالهای مورد نیاز از سوی بویلرها و کنترلهای موجود در سیستم تأمین می شود. در ادامه در مبحث کنترل به چگونگی تولید این سیگنالها می پردازیم

همانطور که کاملاً مشخص است ممکن است این شیر نیاز به تعمیر و تعویض داشته باشد بنابراین باید یک خط Bay pass برای آن در نظر گرفت

سایز خط ورودی 20 اینچ در نظر گرفته شده است و حداکثر سرعت سیال داخل آن 20 متر بر ثانیه است مشخصات مکانیکی لوله بر اساس ASMEB31.3  و ضخامت جداره برابر با  127mm و حداکثر خوردگی ناشی از فرسایش برابر با 3mm ، در فشار طراحی 16barg در نظر گرفته شده است

به دلیل بزرگ بودن سایز خط لوله و شیرهای موجود شیر اصلی به وسیله موتور الکتریکی باز و بسته می شود که این موتور به وسیله سیگنال دریافتی کار می‌کند

برای خروج گاز باقیمانده در لوله ها به هنگام تعمیر و نگهداری از یک خط 2 اینچ که حاوی نیتروژن است استفاده می شود. بعد از خروج گاز از شیر اصلی مسیر به دو خط مساوی 20 اینچ تقسیم شده و بسوی فیلترهای تصفیه گاز می رود قبل از ورود به فیلترها دو شیر اصلی از نوع Ball valve در مسیر تعبیه شده است که برای جداسازی فیلترها از سیستم به منظور تعمیر و تعویض بکار میرود

          ·        به نقشه های زیر رجوع شود

1- FSP- PR-

2-FSP- PR-

    ·   جهت مشاهده اطلاعات طراحی به ضمیمه 1 که شامل گزارش اطلاعات و پردازش آنها که به وسیله نرم افزار hycyc مدل شده است توجه فرمائید

این نرم افزار که اساس طراحی تمام پالایشگاه ها و سیستم های مربوط به نفت و گاز و پتروشیمی است با مدل کردن واقعی طرح کلیه اطلاعات از قبیل اندازه خط لوله، فشار، ده، سرعت، تبادل انرژی، و …. را در اختیار ما قرار می دهد

2-3-فیلترهای تصفیه کننده گاز

          به دلیل وجود میعان در داخل خط لوله و مایعات موجود در آن همچنین وجود ذرات جامد ناشی از نصب خطوط لوله و گرد و خاک داخل لوله گاز ورودی باید تصفیه شود. این امر به دلیل اینکه این گاز بعداً وارد قسمت تقلیل فشار میشود دارای اهمیت خاصی است چون سیستم تقلیل فشار نسبت به هرگونه جسم جامد و مایع حساس است همچنین در بویلرها نیز وجود ذرات جامد و مایع باعث بروز مشکلات جدی خواهد شد

پس از خروج گاز از شیر اصلی و وارد شدن آن به فیلترها عملیات زیر صورت می گیرد

نازل N1  ورودی گاز بر روی فیلترها قرار دارد واین فیلترها به صورت افقی قرار دارند ابتدا گاز وارد مرحله اول فیلتر شده و در آنجا قطرات مایع آن به وسیله اختلاف وزن قطرات مایع از گاز جدا می شود بعد از آن گاز به مرحله بعدی رفته و قطرات مایع در ته فیلتر ته نشین می شود بعد از آن گاز که دارای رطوبت و گرد و خاک است وارد مرحله دوم شده و در آنجا به وسیله نوع خاصی از فیلترهای جدا کننده خشک و عاری از گرد و غبار می شود رطوبت گرفته شده دوباره ته نشین می‌شود و گرد وخاک و ذرات جامد درون فیلتر باقی می ماند بعد از مدت زمان مشخصی فیلترهای مرحله دوم تعویض خواهد شد

سپس گاز خشک و تصفیه شده از نازل خروجی N2 خارج شده و به سوی ایستگاه اندازه گیری می رود. هر گاه سطح مایعات داخل فیلتر به حد کافی بالا بیاید این مایعات به مخزن ذخیره فرستاده می شود. که در زیر این فیلترها قرا ردارد این کار به وسیله دو سنسور N9A/B انجام می شود که با اندازه گیری سطح مایع و بالا آمدن آن از حد معینی مایعات را به درون منبع ذخیره می فرستد. هر گاه سطح مایعات درون منبع ذخیره بالا بیاید به وسیله دو سنسور دیگر N7A/B که باعث باز شدن دو نازل N6,N5 می شوند مایعات درون منبع تخلیه شده و به سوی واحد تصفیه آب می رود

برای کنترل فشار داخل این فیلترها مقداری فشار سنج بر روی آن نصب می شود که نازل شماره N8   برای این کار در نظر گرفته شده است

جهت خروج فشار اصلی درون این فیلترها یک شیر اطمینان که به وسیله فشار باز می شود در نظر گرفته شده است. که هر گاه فشار از حد معینی بالاتر برود به طور خودکار عمل می کند. خروجی این شیر به داخل سیستم FLARE که باعث سوزاندن گازهای مضر است می رود که بعداً توضیح داده خواهد شد. نازل شماره N4 جهت شیر اطمینان تعبیه شده است

به منظور تخلیه گاز و مایعات درون فیلتر در زمان تعمیر کلیه ورودی ها و خروجی را بسته و مقداری گاز نیتروژن به داخل آن تزریق می کنند که باعث خروج گازها و مایعات باقیمانده می شود. سپس این گاز ها به همراه گاز نیتروژن به وسیله یک شیر کوچک که در خط شیر اطمینان و قبل از آن است خارج می شود این شیر بطور دستی باز و بسته می شود و همانطور که در نقشه ها مشخص است خروجی این شیر نیز به سیستم FLARE است. جهت تزریق نیتروژن از نازل شماره N3 استفاده می شود

پس از تصفیه گاز و خروج آن از فیلترها، گاز به سوی ایستگاه اندازه گیری دبی فرستاده می شود

سایز خروجی و فشار خط همچنان ثابت است و تمامی مشخصات مکانیکی ثابت است. بعد از خروجی فیلتر یک شیر قرار دارد که باعث جداسازی فیلتر و بسته شدن مسیر گاز به هنگام تعمیر و تعویض است

به دلیل اهمیت این فیلترها طراحی آنها بسیار مهم است. درانتها چگونگی طراحی این فیلترها به صورت کامل توضیح داده شده است

-به نقشه های زیر رجوع شود

1-FSP- PR- 1001              2-FSP- PR-

3-3-واحد اندازه گیری دبی

پس از خروج گاز از هر فیلتر دو خط دوباره به یک خط تبدیل شده هم چنان دارای سایز ثابت 20 اینچ و فشار عملکرد 8-10BARG و سایر شرایط مکانیکی خط لوله که قبلاً‌ ذکر شد می باشد

سپس گاز به سوی واحد اندازه گیری دبی می شود تا دبی حجمی آن مشخص گردد. قبل از این مرحله یک سیر برای شیر اطمینان با سایز 3 اینچ در نظر گرفته شده است تا در صورت بروز احتمالی افزایش فشار به واحد اندازه گیری آسیب نرسد طبیعی است که خروجی شیر اطمینان به سیستم FLARE منتقل می شود

همچنین برای تخلیه گازهای باقیمانده در خط لوله در هنگام بسته بودن دو شیرخروجی فیلترها از یک سیستم تزریق نیتروژن که قبلاً توضیح داده شد استفاده می گردد

کلیه تجهیزاتی که تاکنون توضیح داده شد در نزدیکی خط لوله سراسری و در ورودی نیروگاه قرار دارد. برای انتقال گاز از بیرون نیروگاه به نزدیکی محوطه مشعل ها یک فاصله 600 متری وجود دارد که لوله در طی این مسیر از زیرزمین عبور داده می شود

در ایستگاه اندازه گیری کنترل به وسیله تجهیزات ابزار دقیق مقدار دما و فشار اندازه گیری می شود سپس به وسیله المان دیگری مقدار دبی گذرنده در خط لوله اندازه گیری می شود

اندازه گیری دبی به وسیله یک اریفیس صورت می گیرد که با تغییر سطح گذرنده جریان باعث ایجاد اختلاف فشار می گردد و با توجه به رابطه زیر مقدار دبی تعیین می شود

مقدار دبی اندازه گیری شده به صورت نرمال بر متر مکعب نیست برای استاندارد کردن دبی باید مقدار فشار ودمای موجود در خط اندازه گیری شود این کار به وسیله دو المان PT (اندازه گیری فشار) و TT (اندازه گیری دما) صورت می گیرد

سپس اطلاعات مربوط به دما و فشار و دبی به واحد پردازش FY منتقل می شود و از آنجا خروجی به صورت یک عدد بروی FQI  ظاهر می شود که واحد آن نرمال متر مکعب بر ساعت است

برای جداسازی تجهیزات اندازه گیری و تعمیر آن دو شیر در دوطرف این سیستم تعبیه شده است که در هنگام تعمیر بسته میشود و جریان گاز از مسیرBay  Pass عبور می کند

پس از این مرحله جریان گاز به سوی ایستگاه تقلیل فشار می رود

-به نقشه های زیر رجوع شود

1- FSP- PR-

2-FSP- PR-

انتخاب کنتور

 

دریافت این فایل

برای دریافت پروژه اینجا کلیک کنید

نیروگاه هسته ای (مربوط به درس آزمایشگاه ترمودینامیک)

برای دریافت پروژه اینجا کلیک کنید

 نیروگاه هسته ای (مربوط به درس آزمایشگاه ترمودینامیک) دارای 36 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد نیروگاه هسته ای (مربوط به درس آزمایشگاه ترمودینامیک)  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی ارائه میگردد

توجه : در صورت  مشاهده  بهم ريختگي احتمالي در متون زير ،دليل ان کپي کردن اين مطالب از داخل فایل ورد مي باشد و در فايل اصلي نیروگاه هسته ای (مربوط به درس آزمایشگاه ترمودینامیک)،به هيچ وجه بهم ريختگي وجود ندارد


بخشی از متن نیروگاه هسته ای (مربوط به درس آزمایشگاه ترمودینامیک) :

نیروگاه هسته ای (مربوط به درس آزمایشگاه ترمودینامیک)

نیروگاه های اتمی

میزان کل انرژی های شناخته شده در کره زمین ، در جدول زیر منعکس شده است :…………………..

بسادگی ملاحظه می شود که نفت و گاز طبیعی کمترین میزان ذخیره را دارا می باشند و ذغال سنگ در مرحله بعد قرار دارد . ذخیره اورانیوم 235 ، که تکنولوژی امروزی تولید انرژی از آن را امکان پذیر ساخته است کمی بیش از میزان ذخایر نفت می باشد. ذخیره گونه های دیگر مواد رادیو اکتیو سنگین هزاران برابر ذخیره نفت خام است . همانطوریکه از اطلاعات انتهای جدول نیز مشخص است میزان انرژی دو تریم موجود در طبیعت ، که با تبدیل آن به هلیوم انرژی کسب می گردد (پمپ های هیدروژنی ) ، به تنهائی هزاران برابر ذخایر کل مواد رادیو اکتیو می باشند.

میزان ذخایر موجود جهت جهت گیری آتی انسان را برای تامین انرژی قابل مصرف خود به نمایش می گذارد. در حال حاضر علاوه بر مصرف نفت ، گاز طبیعی و ذغال سنگ در تولید انرژی های قابل کنترل ، اورانیوم نیز جزء منابع اقتصادی تامین کننده انرژی الکتریکی در آمده است ، گرچه تلاش و جهت گیری ها به سمتی است که بتوان از هیدروژن سنگین (دتریم ) موجود در طبیعت نیز، که عمده ترین گونه شناخته شده انرژی نهفته در جهان است ، استفاده کرد.
با توجه به آنچه که در بالا به آن اشاره شد ساختار و گونه های مختلف نیروگاه اتمی در زیر بیان می گردد.
شکل عمومی تولید انرژی الکتریکی در نیروگاههای اتمی همانند نیروگاههای بخاری است با این تفاوت که منبع تولید گرما سوخت فسیلی نمی باشد و انرژی مورد نیاز جهت تولید بخار برای گرداندن توربین ، از فعل و انفعالات اتمی در راکتور بدست می آید.

معمولاً انرژی حاصل از فعل و انفعالات اتمی در راکتور به یک سیال منتقل می گردد که این سیال می تواند بطور مستقیم به طرف توربین هدایت گردد و یا با عبور از مبدل گرما ، سیال دیگری را گرم نموده و نهایتاً آب لازم را به بخار تبدیل کرده و آنرا به توربین هدایت کند.
در راکتور های اتمی اولیه ، سیال منتقل کننده اولیه آب بوده که مستقیماٌ پس از تبدیل شدن به بخار بطرف توربین هدایت می شد اما در تکنولوژی امروزی برای ایجاد امکان کنترل بیشتر روی فعل وانفعالات اتمی و کاهش خطرات ناشی از فعل و انفعالات ، سیال واسطی بصورت مدار بسته حرارت تولیده شده در راکتور را در مبدل حرارتی جداگانه ای به آب منتقل نموده و آنرا به بخار تیدیل می نماید . .
فعل و انفعالات اتمی بدو صورت انجام می پذیرد:

الف ) شکافت یا شکست اتمی :
در این روش عناصر سنگین از طریق فعل وانفعالات اتمی به عناصر سبک تبدیل شده و انرژی آزاد می نمایند. در این حالت عناصر سنگین با از دست دادن نوترون و کاهش وزن به آزاد سازی انرژی درونی خود می پردازند. در راکتورهای نیروگاههای اتمی موجود، از این فرایند استفاده می شود
ب ) جوش یا گداخت اتمی :
در این روش عناصر سبک با جذب نوترن به عناصر سنگین تر تیدیل می شوند و همزمان با از دست دادن بخش جزئی از وزن خود ، قسمتی از انرژی درونی خود را آزاد می کنند.

شمای کلی مولدهای اتمی در شکل زیر منعکس شده است :………………………………

دریافت این فایل

برای دریافت پروژه اینجا کلیک کنید

مقاله درباره خواص اینرسی سطوح افقی

برای دریافت پروژه اینجا کلیک کنید

 مقاله درباره خواص اینرسی سطوح افقی دارای 12 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله درباره خواص اینرسی سطوح افقی  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی ارائه میگردد

توجه : در صورت  مشاهده  بهم ريختگي احتمالي در متون زير ،دليل ان کپي کردن اين مطالب از داخل فایل ورد مي باشد و در فايل اصلي مقاله درباره خواص اینرسی سطوح افقی،به هيچ وجه بهم ريختگي وجود ندارد


بخشی از متن مقاله درباره خواص اینرسی سطوح افقی :

*مقاله درباره خواص اینرسی سطوح افقی*

خواص اینرسی سطوح افقی

7.1) گشتاور ماند یك سطح افقی

7.2) گشتاور ماند قطبی یك سطح مقطع افقی

7.3) قضیه محورهای موازی (یا تئوری انتقال) برای گشتاور ماند/ شعاع دوران

7.4) روش سطوح مركب

در این بخش خواص اینرسی سطوح افقی را مطالعه می كنیم. یك دلیل برای مطالعه این موضوع در استاتیك این است كه این خواص در قواعد تعیین برآورد نیروی هیدرواستاتیك (فشار اب عمق یا فشار ایستایی) روی یك حجم غوطه ور، ظاهر می‌شوند. (كه در بخش 8.2 آزمایش می كنیم) یك دلیل مهم تر برای این مطالعه این است كه بعضی مواقع به عنوان یك پیش نیاز برای دوره های مقاومت مصالح (یا تغییر شكل پذیری اجسام) كه از استاتیك پیروی می كند، در نظر گرفته می شود.

در دوره های بعد، دانشجو می فهمد كه فشار روی یك تیر بارگذاری شده متقاطع (عرضی)، تحت شرایط خاص اما مهم، گشتاور مانند بخش های تقاطع تیر نسبت عكس دارد.

بطور مشابه خمش تیر با گشتاور ماند كه قسمت مقاومت را برای شكیت تیر نسبت عكس دارد.

همینطور گشتاور ماند قبلی یك معیار در پایداری محور انتقال بنده در پیچش، یا چرخش می‌باشد.

چهار قسمت اولیه در این بخش می تواند توسط دانشجویی كه تنها با انتگرال ساده آشنایی دارد خوانده شود. اینها بخش هایی هستند كه بطور معمول در دوره اولیه مكانیك دگردیس پذیری مورد نیاز می‌باشد. سه بخش آخر، از انتگرال های دوگانه در زمانیكه با اجسام است سر و كار داریم، استفاده می كنند.

گشتاور ماند جرم در دینامیك مورد نیاز می شود، ما این موضوع مرتبط را در دومین سطح در جاییكه بحث ایجاب كند را بررسی می كنیم.

7.1) گشتاور ماند یك سطح افقی

برای سطح افقی نشان داده شده در شكل، گشتاور ماند نسبت به محور x و y چنین تعریف می شوند: Ix و Iy

این تعریف روشن می سازد كه چرا یك گشتاورماند، گشتاور دوم نامیده می شود، به خاطر مربع كورن فاصله از محور x برای Ix(و از محور y برای Iy)

ما گشتاور اولیه را در بخش 6 نسبت به یك مفهوم مركز ثقل دیدیم.

دریافت این فایل

برای دریافت پروژه اینجا کلیک کنید

مقاله ژئوفیزیک زبان اصلی

برای دریافت پروژه اینجا کلیک کنید

توجه : این فایل به صورت فایل PDF (پی دی اف) ارائه میگردد

 مقاله ژئوفیزیک زبان اصلی دارای 8 صفحه می باشد و دارای تنظیمات و فهرست کامل در PDF می باشد و آماده پرینت یا چاپ است

فایل پی دی اف مقاله ژئوفیزیک زبان اصلی  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی ارائه میگردد

توجه : در صورت  مشاهده  بهم ريختگي احتمالي در متون زير ،دليل ان کپي کردن اين مطالب از داخل فایل مي باشد و در فايل اصلي مقاله ژئوفیزیک زبان اصلی،به هيچ وجه بهم ريختگي وجود ندارد


بخشی از متن مقاله ژئوفیزیک زبان اصلی :

مقاله ژئوفیزیک به زبان انگلیسی مخصوص رشته دانشگاهی فیزیک

عنوان مقاله:

Application of electrical resistivity method for groundwater exploration at the Moghra area, Western Desert, Egypt

Abstract: Moghra territory is one of the most encouraging regions for watered farming and development
in the northern part of Western Desert. To achieve that development groundwater is considered
the most favorable tool. Geophysical survey in terms of geoelectrical resistivity sounding
has been conducted using the Schlumberger array – eleven vertical electrical soundings (VES’s) were
measured on the study area. The aim of this study was to investigate the hydrogeological condition
at the area under investigation.
Three geoelectric sections are prepared; each of them is composed of four units. The first layer
has resistivity ranging from 58 to 2029 ohm.m and thicknesses from 0.46 to 10.7 m characterizing
a gravely sand facies of Quaternary age (Pleistocene to Holocene). The second geoelectrical layer
has resistivity values ranging between 188 and 518 ohm.m which are comparatively high, with various
depths varying between 14.7 and 25.8 m from Lower Miocene age. It is formed of sand and
gravel. The third geoelectrical layer is considered the aquifer for the area under investigation with
moderate electrical resistivity values (17–111 ohm.m), and could be recognized sometimes as the
most extreme depth of penetration. At the maximum depth of penetration of this area, the lower
layer (fourth layer) was recognized with the highest electrical resistivity values (1227–8935 ohm.
m) of basaltic sheet (Precambrian age).
Structurally, the study area is influenced by three faults two of them are geological/geoelectrical
faults forming a graben structure at the central part; the third fault is a geoelectrical fault and is
located to the west of the graben structure forming a horest structure.

دریافت این فایل

برای دریافت پروژه اینجا کلیک کنید